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Abstract. We initiate the study of transaction fee mechanism design
for blockchain protocols in which multiple block producers contribute to
the production of each block. Our contributions include:
– We propose an extensive-form (multi-stage) game model to reason

about the game theory of multi-proposer transaction fee mecha-
nisms.

– We define the strongly BPIC property to capture the idea that all
block producers should be motivated to behave as intended: for ev-
ery user bid profile, following the intended allocation rule is a Nash
equilibrium for block producers that Pareto dominates all other Nash
equilibria.

– We propose the first-price auction with equal sharing (FPA-EQ)
mechanism as an attractive solution to the multi-proposer trans-
action fee mechanism design problem. We prove that the mechanism
is strongly BPIC and guarantees at least a 63.2% fraction of the
maximum-possible expected welfare at equilibrium.

– We prove that the compromises made by the FPA-EQ mechanism
are qualitatively necessary: no strongly BPIC mechanism with non-
trivial welfare guarantees can be DSIC, and no strongly BPIC mech-
anism can guarantee optimal welfare at equilibrium.

1 Introduction

1.1 Transaction Fee Mechanisms

A transaction fee mechanism is the component of a blockchain protocol respon-
sible for deciding which pending transactions should be included for processing,
and what the creators of those transactions should pay for the privilege of execu-
tion in the blockchain’s virtual machine. For example, the Bitcoin protocol [25]
launched with a first-price auction as its transaction fee mechanism (which re-
mains in use to this day): users submit bids along with their transactions; should
a transaction be included in a block, its bid is transferred from the user to the
⋆ Work performed in part during an internship at a16z crypto.
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producer of that block. Block producers are then expected to assemble blocks
that maximize their revenue (i.e., the sum of the bids of the included transac-
tions) subject to a block size constraint. The Ethereum protocol also launched
with a first-price auction as its transaction fee mechanism [41] but, in order
to achieve stronger incentive-compatibility guarantees, the protocol’s first-price
auction was swapped out in August 2021 in favor of a more sophisticated trans-
action fee mechanism known as EIP-1559 [6]. Since the initial economic analysis
of EIP-1559 [28], a large body of research has been developed to explore the de-
sign space of transaction fee mechanisms and to assess different designs through
the lenses of incentive-compatibility (both for users and for block producers),
collusion-resistance, welfare, revenue, and more; see Section 1.4 for an overview.

The entire literature on transaction fee mechanisms considers only leader-
based blockchain protocols in which each block is assembled unilaterally by
a single block producer (like a Bitcoin miner or an Ethereum validator) with
monopoly power over the contents of its block. This focus reflects the fact that
the vast majority of the major blockchain protocols deployed to-date are leader-
based in this sense. For example, all longest-chain protocols in the spirit of Bit-
coin and PBFT-type protocols in the vein of Tendermint [5] are leader-based.
But the state-of-the-art in consensus protocol design is evolving, and the design
of transaction fee mechanisms must evolve with them.

1.2 Leaderless Blockchain Protocols

A new generation of consensus protocols, known as DAG-based consensus, is
exploring leaderless protocol designs (where “DAG” stands for “directed acyclic
graph”). In DAG-based consensus protocols, multiple validators build and pro-
pose blocks concurrently. Together, the validators build a DAG: whenever a block
is proposed by a validator, the block references blocks from previous rounds, ef-
fectively voting on these referenced blocks. In each round, some of the blocks
(sometimes referred to as anchor blocks) are used as checkpoints in the DAG
structure for consensus. When an anchor block is finalized, transactions from all
blocks in its causal history that have not been executed previously are deter-
ministically ordered and staged for execution.

Recently, DAG-based consensus protocols have experienced a rise in the
blockchain ecosystem, with Sui running Mysticeti in production [36] and other
projects such as Aptos planning to transition to DAG-based consensus. The
main reason for the rise in popularity of DAG-based consensus protocols is the
significant throughput improvements they achieve in comparison to single-leader
BFT consensus protocols [4,17,9,34,35]. These throughput improvements stem
primarily from two design choices: (1) the separation of the communication and
consensus layers, and (2) the use of simultaneous block proposals by all valida-
tors to overcome the bottlenecks that arise with the single-leader approach (in
effect, spreading what had been a concentrated workload for the leader across all
validators). Further, while DAG-based protocols initially suffered from increased
latency, current protocols achieve almost optimal latency (up to one extra com-
munication round) [2,1]. Finally, DAG-based protocols have the advantage that
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they generally recover quickly from crash failures of leaders given that they have
backup leaders in place [2].

1.3 Our Contributions

This paper initiates the study of transaction fee mechanism design for blockchain
protocols in which multiple block producers contribute to the production of
each block. To reason about such mechanisms, several new modeling and design
challenges must be addressed:

– Transaction fee mechanism design with a single block producer can focus on
equilibria purely from the perspective of users, with the block producer best
responding to the resulting bids; with multiple block producers, the “game
within the game,” meaning the interaction between the incentives of different
block producers, must be explicitly modeled and analyzed.

– The design of a transaction fee mechanism must now specify how proposals
from multiple block proposers are aggregated into a single block of confirmed
transactions.

– The design of a transaction fee mechanism must now specify how any un-
burned fee revenue from users is distributed between the different block
proposers.

This paper offers the following contributions:

– We formally model the game theory of multi-proposer transaction fee mech-
anisms via extensive-form (multi-stage) games. Further, we define incentive-
compatibility for block producers in a multi-proposer transaction fee mecha-
nism, focusing on a condition we call strongly BPIC. Intuitively, a transaction
fee mechanism is strongly BPIC if, no matter what the user bids, following
the intended allocation rule is a Nash equilibrium for block producers that
Pareto dominates all other Nash equilibria. While we use our model specif-
ically to study the welfare guarantees achievable by multi-proposer trans-
action fee mechanisms, it should serve as the appropriate starting point to
study a number of other potential benefits of such mechanisms (see Sec-
tion 1.4 below for examples).

– We propose the first-price auction with equal sharing (FPA-EQ) mechanism
as an attractive solution to the multi-proposer transaction fee mechanism
design problem.4 We prove that the mechanism is strongly BPIC and guar-
antees near-optimal welfare. Precisely, for every joint distribution over (pos-
sibly correlated) user valuations, for every subgame perfect equilibrium of
the mechanism in which block producers play only Pareto-dominant Nash

4 In Sui’s current transaction fee mechanism, users pay their bids, and fee revenue
is shared with validators pro rata, proportional to validator stake weights (Alberto
Sonnino, personal communication, October 2024). The FPA-EQ mechanism can be
viewed as the refinement of this mechanism in which transaction fees are shared with
validators in proportion to the number of blocks they have contributed to.
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equilibria, the expected equilibrium welfare is at least 1− 1
e ≈ 63.2% of the

maximum possible. Our analysis here brings, for the first time, the powerful
toolbox on “price of anarchy” bounds to bear on the analysis of transaction
fee mechanisms. A simple example shows that the bound of 63.2% is tight
in the worst case.

– We prove that the compromises made by the FPA-EQ mechanism are qual-
itatively necessary: no strongly BPIC mechanism with non-trivial welfare
guarantees can be DSIC (i.e., with truthful bidding a dominant strategy for
users), and no strongly BPIC mechanism can guarantee optimal welfare at
equilibrium.

1.4 Related Work

General TFM literature. There is a long line of work studying transaction fee
mechanisms for single-leader protocols, particularly focusing on Ethereum and
Bitcoin. Our model of transaction fee mechanism design closely follows the line
of work initiated by Roughgarden [29] to analyze the EIP-1559 mechanism [6].
Before this, research on Bitcoin’s fee market focused on monopolistic pricing
mechanisms [20,44]. More recent work in this area includes [26] and [13]. Build-
ing off Roughgarden’s model, Chung and Shi [8] show that achieving an ideal
TFM is impossible. They attempt to address these impossibilities using cryp-
tography [31,42], but even with cryptographic methods, perfect TFMs remain
unachievable. Furthermore, Chung et al. [7] and Gafni and Yaish [14] show that
no mechanism can be incentive compatible for the users and the block producers
while also being collusion-resistant. All of these impossibility results carry over
to our context, as a single-leader protocol is a special case of a multiple-leader
protocol. Although the majority of this work is prior-free, Zhao et al. [46] con-
sider a Bayesian setup, demonstrating ways to circumvent these impossibility
results in cases where bidders have i.i.d. valuations. Other works explore TFM
dynamics over multiple blocks [10,21] and incorporate maximal extractable value
(MEV) into traditional TFM models [3].

DAG-based consensus. Hashgraph [4] was the first protocol to introduce a DAG-
based consensus protocol. It separated the communication layer and the consen-
sus logic, with the communication layer constructing a DAG of messages which
is then used by the consensus protocol. Later protocols adopted a round-based
structure within the DAG to design more efficient asynchronous BFT proto-
cols [15,17,9,34]. Among these, Bullshark’s partially synchronous variant became
the first widely deployed DAG-based consensus protocol, notably used in the Sui
blockchain [35]. Since Bullshark’s deployment, a number of papers have focused
on reducing the latency of DAG-based consensus protocols [18,23,33,2,32,1]. The
designs in these papers generally either move towards uncertified DAGs (which
do not require explicit certification) or interleave multiple instances of the Bull-
shark protocol on a shared DAG. Mysticeti [2] has replaced Bullshark as the
consensus protocol used by the Sui blockchain [36].
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Economics of multiple leaders. There is a modest amount of work concerning
the incentives faced by validators in multi-leader protocols. Zhang and Kate [45]
show how DAG-based consensus protocols can be manipulated for MEV, while
Malkhi et al. [24] propose MEV protection for such protocols. Fox et al. [11] look
at the cost of censorship in single-leader protocols and show how TFMs spe-
cific to multi-leader protocols could potentially be used to significantly increase
the cost of censorship. The Solana community has been considering whether
to introduce multiple leaders to promote competition between block producers
for the benefit of users [43], and Ethereum is planning on incorporating some
of the ideas from multi-proposer architectures through FOCIL [39] to increase
Ethereum’s censorship resistance. The present work does not directly address
questions around MEV, censorship, or explicit competition between block pro-
ducers, but we believe that the model that we introduce in the next section can
serve as the starting point for a formal study of these questions.

2 The Model

This section defines our game-theoretic model, the design space of transaction fee
mechanisms, several notions of incentive-compatibility, and approximate welfare
guarantees.

2.1 The Players

Games have three ingredients: players, strategy spaces, and payoffs. For transac-
tion fee mechanisms (TFMs), there are two types of self-interested players, users
and block producers (BPs). We discuss each in turn.

We assume that the set I = {1, 2, . . . , n} of users is known, and that each
is identified with a single transaction; we refer to users and transactions inter-
changeably. We assume that user i has a private valuation vi for the inclusion of
its transaction in the next block, and that transaction validity does not depend
on transaction ordering. When discussing Bayes-Nash equilibria (as is neces-
sary when discussing TFMs without dominant strategies, such as variants of
first-price auctions), we assume that user valuations v are drawn from a prior
distribution D that is common knowledge among the users.5 User valuations
may be correlated; that is, D need not be a product distribution.

We consider TFMs in which each user attaches a nonnegative bid bi to its
transaction (thus, the strategy space of user i is the possible choices of bi). We
assume that each user has a quasi-linear utility function, meaning that its payoff
is the value it receives (vi if its transaction is included in the next block and 0
otherwise) minus the payment it makes. (Utilities functions will be stated more
formally following the definition of TFMs; see Section 2.4.)

5 We allow valuation distributions to have atoms at zero (or at other values), in which
case the number of (non-null) players can be thought of as stochastic rather than
known.



6 Pranav Garimidi, Lioba Heimbach, and Tim Roughgarden

We also consider a set J = {1, 2, . . . ,m} of BPs. BP strategies correspond to
blocks, where for a known block size k, a block is a set of at most k transactions
(together with the bids of those transactions). We assume that each BP j ∈ J
has an associated subset Sj of transactions that it can include in its block; we
refer to the special case in which Sj = I for all j ∈ J as the BP-symmetric
setting and the case of general Sj ’s as the BP-asymmetric setting. A block is
feasible for BP j if it includes only transactions of Sj and, possibly, additional
transactions created by j itself (e.g., in order to manipulate a TFM’s payment
rule). We assume that the Sj ’s are common knowledge. The payoff of a BP is
defined as the revenue it earns from transactions other than its own minus.

2.2 The Game

TFM outcomes are, intuitively, determined by a two-stage process: users decide
which bids to attach to their transactions, and BPs then decide which trans-
actions to include. Previous work on TFMs, with a single BP, could essentially
model the process with one stage (with the understanding that the BP will re-
spond to users’ bids with its favorite block). With multiple BPs best responding
to each other (in addition to users’ bids), it is important to explicitly model
the block formation process as a two-stage game. We do this next, using the
standard formalism for extensive-form games (e.g. [12]).

Game trees. To review, an extensive form game is defined by a rooted tree (the
game tree). Each node represents a single action to be taken by a single player,
with the node labeled with that player and edges leading to the node’s children
labeled with the possible actions. Each leaf of the tree corresponds to an outcome
of the game, and is labeled with players’ payoffs in that outcome. Thus, root-
leaf paths of the game tree correspond to action sequences that terminate in an
outcome of the game. It is a convenient tradition to allow nodes that are labeled
with a non-strategic “Nature” player, indicating that the action at that node is
chosen at random from a distribution that is common knowledge. Finally, for
each player, the nodes labeled with that player are partitioned into information
sets. An information set represents a set of nodes that are indistinguishable to
the player at the time it must take an action (and thus, the same action must
be taken by a player at all nodes in the same information set).

To model behavior in TFMs with multiple BPs, we consider a game tree
with n + m + 1 levels. (The outcomes and payoffs at the leaves of this tree
will depend on the choice of the TFM, but the tree structure is independent of
the particular TFM.) At level 0, Nature moves and chooses valuations v for all
users from the assumed prior D. At each level l = 1, 2, . . . , n, user l selects its
bid bl. Information sets are defined for user l so that its choice of bid depends
only on its own valuation vl (and not on the other valuations v−l determined at
level 0 or the bids chosen by users i ∈ {1, 2, . . . , l− 1} at earlier levels). At each
level l = n+ 1, n+ 2, . . . , n+m, BP j = l − n selects its block Bj . Information
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sets are defined for a BP so that its choice of block can depend on the bids b
chosen by users but not on the blocks chosen by the other BPs. 6

Subgame perfect equilibria. Our analysis uses what is arguably the most canoni-
cal equilibrium concept in extensive-form games, namely subgame perfect equi-
libria. In such a game, a strategy for a player is defined by a mapping from each
of its information sets to one of the actions available at that information set.
In our model of TFMs, a user has one information set for each realization of
its valuation, and a BP has one information set for each user bid vector. Thus,
a user strategy is simply a bidding strategy, meaning a mapping vi 7→ bi from
valuations to bids. A BP strategy is a mapping b 7→ Bj from user bid vectors to
feasible blocks. Thus, leaves of the game tree are effectively labeled by v (Na-
ture’s action at level 0), b (users’ actions at levels 1 through n), and B (BPs’
actions at levels n+ 1 through n+m); these, in conjunction with the choice of
a TFM, will define the player payoffs at this outcome.

A strategy profile in an extensive-form game is called a Nash equilibrium
if the usual best-response condition holds: no player can strictly improve its
expected payoff through a unilateral deviation to a different mapping of its in-
formation sets to actions. That is, each player is best responding to the strategies
chosen by the other players.

Every node of a game tree induces a rooted subtree that can be regarded as
an extensive-form game in its own right. Similarly, every strategy of an extensive-
form game induces a strategy in each of its subgames. A strategy profile of an
extensive-form game is called a subgame perfect equilibrium (SPE) if, for each
if its subgames, the induced strategy profile is a Nash equilibrium. Intuitively,
even after “fast forwarding” to an arbitrary node of the game tree, play from
then on constitutes a Nash equilibrium.7

Intuitively, in our model of TFMs with multiple BPs, the SPE condition
translates to (i) users play a Bayes-Nash equilibrium relative to the BP equilib-
rium strategies; (ii) BPs play a Nash equilibrium relative to the user bids.8

6 Thus, BPs engage in a complete-information game, with the full bid vector b and
the Sj ’s known to all BPs. A good (though possibly difficult) direction for future
work is to consider an incomplete-information generalization of our model. With our
assumptions, users can effectively treat BPs as carrying out the welfare-maximizing
allocation rule. In an incomplete-information setup, users would effectively be sub-
mitting bids to a randomized allocation rule induced by some (perhaps impossible-
to-characterize) Bayes-Nash equilibrium played by the BPs.

7 Without the subgame perfect refinement, Nash equilibria of extensive-form games
allow players to play arbitrary strategies in subgames that are reached with proba-
bility 0.

8 We do not model how BPs coordinate on a given equilibrium. Microfounding the
assumption that BPs reach an equilibrium (e.g., through experience from repeated
play, explicit coordination based on transaction hashes, or other means) is an inter-
esting direction for future research.
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2.3 Transaction Fee Mechanisms

A TFM is specified by four ingredients: an inclusion rule (the blocks of transac-
tions that the BPs are expected to contribute), a confirmation rule (given the
proposed blocks, which transactions are confirmed for execution), a payment
rule (given the proposed blocks, what the creators of confirmed transactions
pay), and a distribution rule (given the proposed blocks, the revenue received by
BPs). Because BPs have unilateral control over the transactions they include,
the inclusion rule can only be viewed as a recommendation to BPs; the other
three rules are hard-coded into the code of a blockchain protocol and cannot be
manipulated by BPs.

We next define these four ingredients formally, along with a number of ex-
amples that illustrate the definitions and demonstrate the richness of the TFM
design space with multiple BPs. (Many of the examples are deferred to Ap-
pendix A.1.) These rules are all defined with respect to a commonly known game
structure, meaning a player set I, a BP set J , BP transaction sets S1, . . . , Sm,
and a block size k.9 Recall that a block Bj is feasible for j if it includes only trans-
actions of Sj and, possibly, transactions that j itself created (along with the bids
attached to the included transactions). When we are concerned only with the
transactions included in a block and not the attached bids, we sometimes abuse
notation and treat a block as a subset of I. We call a profile B = (B1, . . . , Bm) of
block choices an allocation, and call an allocation feasible if each of its blocks Bj

is feasible for the corresponding BP j. We call an allocation shill-free if, for each
of its blocks, only user-submitted transactions are included (i.e., Bj ⊆ Sj for
every BP j). Note that the same transaction may be included in more than one
block of an allocation. We denote by T (B) = ∪j∈JBj the transactions that are
included (at least once) in an allocation B.

Inclusion rules. An inclusion rule can be thought of as a recommendation of the
strategies that BPs should play in each information set of the extensive-form
game described in Section 2.2. Formally, with respect to a game structure, an
inclusion rule is a function y : b 7→ B mapping user bids vectors to feasible
allocations.

For example, the welfare-maximizing (WM) inclusion rule maps each bid
vector to a feasible shill-free allocation that maximizes the sum of the bids of
the included transactions (breaking ties using some consistent rule). For TFMs
with first-price payment rules (see below), this inclusion rule can be interpreted
as maximizing the total fees paid by users.10

Confirmation rules. A confirmation rule specifies which of the included transac-
tions are confirmed for execution. Formally, with respect to a game structure, a
confirmation rule is a function C : B 7→ B that maps each feasible allocation B

9 The valuation distribution D is not part of the game structure; in this sense, a TFM
is by definition prior-free.

10 For another example, the serial dictatorship inclusion rule is described in Ap-
pendix A.1.
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to a set B ⊆ T (B) of confirmed transactions. Note that while a transaction may
be included in multiple blocks, it can only be confirmed once.

For example, the first-price auction (FPA) confirmation rule confirms every
transaction that is included at least once: C(B) = T (B).11

Payment rules. A payment rule specifies the transaction fee paid by the creator
of an included transaction. Formally, with respect to a game structure, a payment
rule is a function p that maps each feasible allocation B to a set of n nonnegative
numbers (one per user).

For example, the first-price auction (FPA) payment rule charges the cre-
ator of an included transaction its bid: pi(B) = bi if i ∈ T (B) and pi(B) = 0
otherwise.12

Distribution rules. A distribution rule specifies the revenue earned by each BP
from the set of included transactions. Formally, with respect to a game structure,
a distribution rule is a function π that maps each feasible allocation B to a set
of m nonnegative numbers (one per BP).

For example, the equal-share distribution rule (FPA version) splits the bid of
each included transaction equally between the BPs: for all j,

πj(B) =
1

m

∑
i∈T (B)

bi. (1)

Many other examples are possible (e.g., splitting the bid of a transaction between
only the BPs that include it in their blocks); see Appendix A.1 for details.

TFMs. A transaction fee mechanism (TFM) is then a tuple (y, C,p, π). We re-
strict attention to TFMs that satisfy the following properties (which are also
shared by all TFMs that have been deployed in practice to-date): (i) determin-
istic, meaning that y, C, p, and π are all deterministic functions of their inputs;
and (ii) ex post individually rational, meaning that pi(B) = 0 if user i’s transac-
tion is not confirmed by the TFM (i.e., i ̸∈ C(B)) and pi(B) ≤ bi otherwise; (iii)
weakly budget-balanced, meaning that users’ payments always cover BP rev-
enue:

∑
j∈J πj(B) ≤

∑
i∈I pi(B) for every feasible allocation B.13 We do allow

the user payments to exceed the BP revenue, in which we case the remaining
user payments are burned (or otherwise redirected away from BPs, for example
to a foundation).

TFMs can be assembled from different inclusion, confirmation, payment, and
distribution rules in many natural ways; see Appendix A.1 for an incomplete list.
11 One reason to include unconfirmed transactions is to use their bids to set prices for

the confirmed transactions, in the spirit of a second-price auction. For more details,
see the second-price auction (SPA) confirmation rule described in Appendix A.1.

12 For another example, the second-price auction (SPA) payment rule is described in
Appendix A.1.

13 As an extension to (iii), money-printing in the form of inflationary rewards (like
a block reward) can be added to a TFM without affecting its incentive or welfare
properties, provided the rewards are the same no matter which feasible allocation B
is chosen by the BPs.
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2.4 Incentive Compatibility

Intuitively, a mechanism is incentive-compatible if its participants are motivated
to behave in a prescribed way, such as by bidding truthfully (in the case of users)
or by choosing blocks as instructed by a TFM’s inclusion rule (in the case of
BPs). We next formalize these two incentive-compatibility properties (one for
users, one for BPs).

Dominant-strategy incentive-compatibility (DSIC). We first observe that the
composition of an (intended) inclusion rule y and confirmation rule C of a
TFM induce an (intended) allocation rule x, with xi(b) = 1 if i ∈ C(y(b)) and
xi(b) = 0 otherwise. That is, x(b) is the characteristic vector of the confirmed
transactions with user bids b, assuming that the BPs carry out the intended
inclusion rule. Under the same assumption, the payoff of user i under bid vector
b in the TFM (y, C,p, π) is

ui(b) = vi · xi(b)− pi(y(b)). (2)

A TFM is then dominant-strategy incentive-compatible (DSIC) if, for every user i,
valuation vi, and bid vector b, ui(vi,b−i) ≥ ui(b). That is, after fixing the
BP strategies to be those recommended by the TFM’s inclusion rule, truthful
bidding is a dominant strategy for every user. For example, in the BP-symmetric
setting (with Sj = I for all j ∈ J), the SPA-EQ and SPA-Shapley TFMs (see
Appendix A.1) are DSIC. TFMs that use the FPA payment rule are never DSIC,
as users are incentivized to shade their bids.

Block producer incentive-compatibility (BPIC). In an outcome of a TFM (y, C,p, π),
specified by the bids b chosen by users and the feasible allocation B chosen by
BPs, the payoff of BP j is πj(B). A TFM is then block producer incentive-
compatible (BPIC) if, for every bid vector b with corresponding intended allo-
cation y(b) = B = (B1, . . . , Bm), every BP j, and every block Bj

′ feasible for j,
πj(B) ≥ πj(Bj

′,B−j). That is, after fixing the user bids to b, the feasible allo-
cation recommended by the TFM’s inclusion rule is a Nash equilibrium among
the BPs.

For example, the SPA-EQ and SPA-Shapley TFMs from Appendix A.1 are
not BPIC, as BPs generally have an incentive to deviate from the WM allocation
rule by including their own transactions in order to boost their overall revenue.
The FPA-Shapley TFM (see Appendix A.1) fails to satisfy BPIC for a different
reason: BPs are generally incentivized to redundantly include a high-bid trans-
action multiple times rather that following the WM allocation rule (in which
each transaction is included at most once).

Strong BPIC. Despite the fact that many natural TFMs fail to satisfy it, the
BPIC condition is relatively weak. For example, any TFM that uses the null
distribution rule (with all transaction fees burned) is trivially BPIC, with all
BPs indifferent across all outcomes. Thus, the BPIC condition does not generally
provide much force toward BPs carrying out the intended inclusion rule.

The next condition, a strengthening of BPIC, states that the intended al-
location should not merely be a Nash equilibrium, but should also be strictly
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superior to all non-equivalent Nash equilibria. Formally, a TFM (y, C,p, π) is
strongly BPIC if, for every user bid vector b, the following conditions hold:

1. the recommended feasible allocation B = y(b) is a Nash equilibrium among
the BPs (holding user bids fixed at b);

2. every Nash equilibrium B′ among the BPs (again, with fixed bids b) is either
equivalent to or Pareto dominated by B.

Intuitively, two feasible allocations are “equivalent” if they are the same up to
tie-breaking and the inclusion of zero-bid transactions. Formally, for a TFM
(y, C,p, π), feasible allocations B and B′ are equivalent if the multi-sets of the
positive bids of the confirmed transactions C(B) and C(B′) are identical. We say
that one allocation B Pareto dominates another allocation B′ if: (i) πj(B) ≥
πj(B

′) for all j ∈ J ; and (ii) πj(B) > πj(B
′) for some j ∈ J . We’ll see in

Section 3.2 an example of a strongly BPIC TFM (the FPA-EQ TFM).

2.5 Approximate Welfare Guarantees

We assess the outcome quality of different TFMs using the welfare objective W (·),
defined as the total value of the confirmed transactions. That is, for a TFM
(y, C,p, π) and feasible allocation B, W (B) =

∑
i∈C(B) vi. TFMs can suffer from

welfare loss for three distinct reasons. First, even if all participants behave as
desired, a TFM’s inclusion rule may result in a suboptimal feasible allocation.
Second, even with the WM allocation rule and truthful bids, BPs may coordi-
nate on a suboptimal Nash equilibrium. Third, even with the WM allocation
rule and BPs that coordinate on the intended Nash equilibrium, non-truthful
bidding by users can lead to suboptimal allocations. (See Appendix A.2 for ex-
amples of all three types.) Thus, a equilibrium welfare approximation guarantee
is a guarantee that the welfare loss from all three of these sources combined is
relatively modest.

3 FPA-EQ: A Strongly BPIC and Near-Optimal TFM

3.1 What Can We Hope For?

We have highlighted three desirable properties of TFMs (in addition to our stand-
ing requirements that TFMs be deterministic and ex post individually rational):
(i) DSIC; (ii) strong BPIC; and (iii) optimal or near-optimal welfare at equilib-
rium. In this work, we take the strong BPIC condition (ii) as a hard constraint.
(If BPs are not properly motivated to carry out the intended inclusion rule, which
in turn determines the confirmed transactions and their payments, it’s unclear
how to interpret a proposed TFM.) In Theorem 4 in Appendix B.1, we prove
that no DSIC and strongly BPIC TFM can achieve a non-trivial equilibrium
welfare guarantee. This result implies that we have no choice but to consider
non-DSIC TFMs. In Theorem 5 in Appendix B.2, we prove that no (possibly
non-DSIC) strongly BPIC TFM can guarantee optimal welfare at equilibrium.
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In light of these negative results, the best-case scenario is a strongly BPIC TFM
that guarantees near-optimal welfare at equilibrium. We present such a TFM
next.

3.2 The FPA-EQ TFM

The rest of this section analyzes the first-price auction with equal sharing (FPA-
EQ) TFM. The ingredients of this TFM were all introduced in Section 2.3:

– the welfare-maximizing (WM) inclusion rule (i.e., with y(b) = B chosen to
maximize the sum of the bids

∑
i∈T (B) bi of the included transactions, with

ties broken according to some consistent rule);
– the FPA confirmation rule (with all included transaction confirmed: C(B) =

T (B));
– the FPA payment rule (with each user of a confirmed transaction paying its

bid);
– the equal share (FPA version) distribution rule (with the payment for each

confirmed transaction split equally between the m block producers, as in (1)).

Because of its FPA payment rule, the FPA-EQ TFM is not DSIC; bidders
are incentivized to shade their bids. Unlike many other natural TFMs, however,
the FPA-EQ TFM is strongly BPIC. The proof of this fact leans heavily on the
choice of the equal-share distribution rule, and also on the matroid structure of
feasible allocations.

Proposition 1 (FPA-EQ Is Strongly BPIC) For every game structure, the
FPA-EQ TFM is strongly BPIC.

Proof. Fix a game structure and a user bid vector b. The payoff of every BP is
proportional to the total amount paid by users (due to the equal-share distribu-
tion rule), and therefore to the sum of the bids of the confirmed transactions (due
to the FPA payment rule), and therefore to the sum of the bids of the included
transactions (due to the FPA confirmation rule). Because the WM allocation
rule instructs BPs to maximize the sum of the bids of the included transactions
over feasible allocations, the intended allocation B∗ is a Nash equilibrium among
the BPs (holding user bids fixed at b). By the same reasoning, B∗ Pareto dom-
inates every Nash equilibrium allocation that fails to maximize the sum of the
bids of the included transactions. Finally, because the subsets of transactions
that can be included in a feasible allocation form a matroid (see Proposition 6)
and due to the lexicographic optimality property of matroids (see Proposition 7),
every feasible allocation B that maximizes the sum of the included bids is equiv-
alent to B∗ (i.e., after ignoring zero-bid transactions, the multi-sets of bids of
transactions in C(B) and C(B∗) are identical).
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3.3 An Approximate Welfare Guarantee for FPA-EQ

Our main result in this section is that the FPA-EQ TFM, in addition to satisfying
the strong BPIC property (Proposition 1), achieves near-optimal welfare at equi-
librium. Precisely, in the extensive-form game induced by this TFM (y, C,p, π)
(see Section 2.2), call a strategy profile inclusion-rule respecting (IRR) at b if,
in the subgame corresponding to b, the BPs choose a feasible allocation that is
equivalent to y(b). (As in Section 2.4, two feasible allocations are equivalent if
the resulting sets of confirmed transactions share the same multi-sets of positive
bids.) A subgame-perfect equilibrium is then called inclusion-rule respecting if
it is IRR at every user bid vector b. For a strongly BPIC TFM like FPA-EQ,
there is good reason to focus on its IRR SPE—in any other SPE, there are bids
vectors for which BPs inexplicably coordinate on a subgame equilibrium that is
Pareto dominated by the one suggested by the TFM’s inclusion rule.

Theorem 2 (FPA-EQ Is Approximately Welfare-Optimal). For every
game structure and valuation distribution D, every inclusion-rule-respecting sub-
game perfect equilibrium of the FPA-EQ TFM has expected welfare at least
1− 1

e ≈ 63.2% of the maximum possible.

The proof of Theorem 2 proceeds in two steps. The first step establishes an
equivalence between the IRR SPE of the FPA-EQ TFM and the Bayes-Nash
equilibria of a (single-shot) winner-pays-bid matroid auction. Intuitively, with
the BP behavior fixed (up to allocation equivalence) in an IRR SPE, we can
analyze users as if they are competing in a single-stage game. See Lemma 3 in
Appendix B.4 for details.

The second step of the proof applies the theory of smooth games (see e.g. [30])
to prove a worst-case bound on the expected welfare of the Bayes-Nash equilib-
ria of winner-pays-bid matroid auctions.14 The details are fairly technical and
deferred to Appendix B.4.

We can obtain stronger guarantees if we impose symmetry conditions on the
BPs and users. In the BP-symmetric setting (see Section 2.1), a simple exchange
argument shows that every SPE of the FPA-EQ TFM is IRR. Thus:

Corollary 1. In the BP-symmetric setting, for every game structure and val-
uation distribution D, every subgame perfect equilibrium of the FPA-EQ TFM
has expected welfare at least 1− 1

e ≈ 63.2% of the maximum possible.

Adapting an example of Syrgkanis [37] for first-price auctions to the present
setting gives a lower bound showing that the approximation factor of 1 − 1

e in
Theorem 2 and Corollary 1 is tight (see Appendix B.4 for details).

Proposition 3 (Theorem 2 Is Tight) There exists a game structure, valua-
tion distribution D, and an inclusion-rule-respecting subgame perfect equilibrium
of the FPA-EQ TFM with expected welfare 1 − 1

e times the expected maximum
welfare.
14 Such a bound was proved in [16] for the special case of independent user valuations;

the bound here for correlated user valuations appears to be new.
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If we further assume that users are symmetric, meaning that their valuations
are drawn i.i.d. from a common distribution, then every SPE of the FPA-EQ
TFM is in fact fully efficient. The following corollary follows from Lemma 3
(in Appendix B.4) and the full efficiency of Bayes-Nash equilibria in multi-unit
auctions with symmetric unit-demand bidders (see e.g. [19]):

Corollary 2 (Optimal Welfare in Symmetric Settings). In the BP-symmetric
setting, for every game structure and i.i.d. valuation distribution, every subgame
perfect equilibrium of the FPA-EQ TFM achieves the maximum-possible expected
welfare.

As noted in Section 2.2, these positive results assume that BPs are capable of
coordinating on an equilibrium of the appropriate type. It would be interesting
to investigate how our guarantees would change under weaker versions of this
assumption.
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A Supplementary Material for Section 2

A.1 Further Examples of TFMs

All of the following rules are defined with respect to a game structure (a user
set I, a BP set J , BP transaction sets S1, . . . , Sm, and a block size k). In all
cases, ties are broken according to some consistent tie-breaking rule.

Example 1 (Serial Dictatorship Inclusion Rule). This inclusion rule is defined,
for every user bid vector b, by y(b) = (B1, . . . , Bm), where Bj is chosen to max-
imize the sum of the bids of the included transactions, subject to disjointness
with B1, . . . , Bj−1 (and feasibility). That is, Bj is the k highest-bidding transac-
tions in Sj \ ∪j−1

h=1Bh. (Or, if there are less than k such transactions, all of them
are included.)
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Example 2 (Second-Price Auction (SPA) Confirmation Rule). This confirmation
rule confirms all but the lowest-bidding included transaction. That is, C(B) =
T (B) \ {t}, where t is the transaction of T (B) with the lowest bid.

Example 3 (Second-Price Auction (SPA) Payment Rule). This payment rule
charges 0 to the lowest-bidding included transaction t, and bt to the other in-
cluded transactions. That is, pi(B) = bt if i ∈ T (B)\{t} and pi(B) = 0 otherwise.

Example 4 (The Null Distribution Rule). This distribution rule burns all trans-
action fees: πj(B) = 0 for all B and j.

Example 5 (Shapley Distribution Rule (FPA Version)). This distribution rule
splits the bid of each included transaction equally among the BPs that included
it. That is,

πj(B) =
∑
i∈Bj

bi
mi(B)

,

where mi(B) = |{h ∈ J : i ∈ Bh} denotes the number of BPs that included i
in their block.

The distribution rule above is intended for use with the FPA payment rule.
The SPA version of the Shapley distribution rule is defined similarly, except
with bi replaced by the lowest bid of an included transaction and with no BP
earning any revenue from the lowest-bidding transaction.

Example 6 (Serial Dictatorship Distribution Rule (FPA Version)). This distri-
bution rule passes on revenue earned from an included transaction to the lexi-
cographically first BP that included it. That is,

πj(B) =
∑

i∈Bj\∪j−1
h=1Bh

bi.

The distribution rule above is intended for use with the FPA payment rule.
The SPA version of the rule is defined similarly, except with bi replaced by the
lowest bid of an included transaction and with no BP earning any revenue from
the lowest-bidding transaction.

There are numerous ways to combine these rules or the rules described in
Section 2.3 to produce natural TFMs. The FPA-EQ TFM is analyzed at length
in Section 3.3. Other examples include:

1. SPA-EQ: WM inclusion rule, SPA confirmation rule, SPA payment rule,
equal-share distribution rule (SPA version). (The SPA version of the equal-
share distribution rule in (1) replaces bi by the lowest bid of an included
transaction and sums only over the transactions of T (B) other than the
lowest-bidding one.)

2. FPA-Shapley: WM inclusion rule, FPA confirmation rule, FPA payment rule,
Shapley distribution rule (FPA version).
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3. SPA-Shapley: WM inclusion rule, SPA confirmation rule, SPA payment rule,
Shapley distribution rule (SPA version).

4. FPA-Serial: serial dictatorship inclusion rule, FPA confirmation rule, FPA
payment rule, serial dictatorship distribution rule (FPA version).

5. SPA-Serial: serial dictatorship inclusion rule, SPA confirmation rule, SPA
payment rule, serial dictatorship distribution rule (SPA version).

A.2 Examples of TFM Welfare Loss

Welfare losses in TFM can have multiple sources. First, a TFM’s inclusion rule
may result in a suboptimal feasible allocation even if all participants behave as
desired. Examples include:

– In the BP-symmetric setting and with known valuations, and a FPA-Shapley
TFM which we redefine to be BPIC. This would mean replacing the WM
inclusion rule with an inclusion rule whereby the BPs maximize their per-
sonal revenue. Then, let k = 1 be the block size, there is one transaction
with bid b1 = m+ ϵ, where ϵ → 0, and m−1 transaction with bids bi = 1 for
i ∈ [2, . . . ,m]. Then all BPs would all include the first transaction, resulting
in a welfare ≈ 2 worse than optimal.

– Consider the following setting, known user valuations, and a TFM serial
dictatorship inclusion rule. The block size is k = 1, there are m = 2 BPs,
and two transactions with bids b1 = b2 = 1 of which the first BP can include
both, while the second BP can only include the first transaction. The first
BP would include the first transaction and there would be no transactions
for the second BP to include – the resulting welfare is a factor of 2 worse
than optimal.

Second, TFM welfare losses can result from BPs coordinating on a suboptimal
Nash equilibrium even with the WM allocation rule and truthful bids as the
following example demonstrates.

– Consider a FPA-EQ TFM in the BP-asymmetric setting. Again, the block
size is k = 1, there are m = 2 BPs, and two transactions with bids b1 = b2 = 1
of which the first BP can include both, while the second BP can only include
the first transaction. The first BP including the first transaction and the
second BP including no transaction is a Nash equilibrium that again results
in a welfare ≈ 2 worse than optimal.

Third, non-truthful bidding in stage 1 by users can lead to suboptimal al-
locations even with the WM allocation rule and BPs that coordinate on the as
demonstrated by Vickrey [40] by showing that the equilibria for a FPA (i.e.,
k = m = 1) are not generally efficient.
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B Supplementary Material for Section 3

B.1 No DSIC and Strongly BPIC TFM Guarantees Non-Trivial
Welfare

We show here that insisting on DSIC and strong BPIC implies that the TFM
must output the empty set for some bid vectors, precluding it from getting any
welfare guarantees. Since we are considering DSIC mechanisms, we consider the
welfare achieved when bidders bid truthfully.

Theorem 4. Any TFM that is DSIC and strongly-BPIC has a worst case wel-
fare approximation of 0.

The theorem follows immediately from the following lemma.

Lemma 1. For any DSIC and strongly-BPIC TFM, for all l > 0 and S , there
exists a valuation vector v where vl > 0 ∀i ∈ [l] and vi = 0 otherwise, such that
xi(v,S) = 0 ∀i ∈ I i.e. the TFM confirms no transactions.

Proof. We proceed by induction on l. For the base case of l = 1, let v1 =
(v1, 0, ..., 0) and consider an arbitrary S. Assume for the sake of contradiction
that x1(v

1,S) = 1 for all v1 > 0. Since the TFM is DSIC, by Myerson’s Theorem,
we have that p1(y(v

1)) = 0. It follows that πj(C(y(v1,S))) = 0 for all j ∈ J
since no transactions make any non-zero payments. However, then we have that
all the block producers are indifferent between the equilibria Bj = ∅ for all
j ∈ J and Bj = yj(v

1,S) contradicting the TFM being strongly-BPIC since
these equilibria confirm different sets of bids. Hence for the TFM to be DSIC
and strongly-BPIC there exists a v1 > 0 s.t. xi(v

1,S) = 0 ∀i ∈ I.
For the inductive hypothesis assume for all S, there exists a valuation vector

vl = (v1, ...vl, 0, ..., 0) s.t. xi(v
l,S) = 0 ∀i ∈ I . We then show for all S′ there

exists a v′ > 0 s.t. for vl+1 with vl+1
i = vl

i for i ̸= l + 1 and vl+1
l+1 = v′,

xi(v
l+1,S′) = 0 ∀i ∈ I

Given a S′ let vl be a valuation vector such that x(vl,S) = ∅ where S is the
projection of S′ to transactions i ̸= l+1. Now assume for the sake of contradiction
that x(vl+1,S′) ̸= ∅ for all v′ > 0. We claim this implies that we must have l+1 ∈
x(vl+1,S′) ∀v′ > 0 . This is because if there is a v′ > 0 where l+1 /∈ x(vl+1,S′),
we have two cases, either

∑
j πj(y(v

l+1,S′)) > 0 or
∑

j πj(y(v
l+1,S′)) = 0. The

former case would imply the TFM is not strongly-BPIC, since in the instance
with valuation function vl and S, the BPs could censor transaction l + 1 and
replace it with a transaction with bid v′. Then the BP’s following y under this
modified valuation vector would pareto dominate following y under vl since
l+ 1 isn’t confirmed under vl+1, hence paying 0 fees, and some BPs get strictly
positive compared to 0 revenue. Otherwise when

∑
j πj(y(v

l+1,S′)) = 0, the
BPs are indifferent between playing y or all proposing Bj = ∅ also violating
strong-BPIC.

However, l+1 ∈ x(vl+1,S′) ∀v′ > 0 implies that pl+1(v
l+1) = 0 by Myerson’s

Theorem. Now again we have the same two cases, either
∑

j πj(y(v
l+1,S′)) > 0
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or
∑

j πj(y(v
l+1,S′)) = 0. Since we still have that l+1 can costlessly be included,

the same reasoning applies contradicting the TFM being strongly-BPIC. Thus
for any S′ there must exist a v′ > 0 such that xi(v

l+1,S′) = 0 ∀i ∈ I.

B.2 No Strongly BPIC TFM Guarantees Optimal Welfare

We now show that no TFM can always be fully efficient at equilibrium when
bidders draw their values from asymmetric distributions. We effectively reduce
our setting to the case of auctioning a single item where the payment rule is
forced to only be a function of the winning bidder’s bid. We use revenue equiv-
alence with a second price auction to show that efficient equilibrium can’t be
implemented with these types of payment rules.

Theorem 5. For any TFM, there exists a game structure and a valuation distri-
bution for which there is a Bayes-Nash equilibrium with expected welfare strictly
less than the minimum possible.

Consider the case where n = 2, m = 1, and k = 1. In this case, the TFM
is equivalent to a single item auction with two bidders. Furthermore, m = 1
implies that the TFM’s payment rule can only be a function of the winning bid.
Thus the theorem follows immediately from the following lemma.

Lemma 2. For any mechanism where the payment rule is a function only of the
winning bid, there exists a valuation distribution for which there is a Bayes–Nash
equilibrium whose expected welfare is strictly less than the maximum possible.

Proof. Suppose, for the sake of contradiction, that there is a mechanism (x, p)
whose payment rule depends only on the winning bid, i.e. pi(b) = f(bi) for
some function f , such that every Bayes-Nash equilibrium in this mechanism is
efficient. We will exhibit two different valuation instances and argue that the
mechanism cannot have an efficient BNE in both instances simultaneously.

Instance 1: Consider an instance I1 with two bidders where

v1 ∼ Uniform
(
[0, 100]

)
and v2 ∼ Uniform

(
[0, 1]

)
.

Let σ(·) =
(
σ1(·), σ2(·)

)
be a Bayes–Nash equilibrium under (x, p) that imple-

ments the efficient outcome for all realizations of (v1, v2). Since σ implements
the efficient outcome for all values, it matches the allocation of a second-price
auction. By revenue equivalence, the bidders’ expected payments under σ in this
mechanism must match their expected payments when bidding truthfully in a
second-price auction.

– For bidder 1: Under the assumption that σ is efficient, we have that the
probability bidder 1 wins is Pr[v1 > v2]. Thus Ev2 [p1

(
σ1(v1), σ2(v2)

)
| v1] =

Pr[v1 > v2] · f
(
σ1(v1)

)
. On the other hand, bidder 1’s expected payment in
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a second price auction is Pr[v1 > v2] ·E[v2 | v2 < v1]. Note that E[v2 | v2 <
v1] = min{ 1

2 ,
v1
2 } giving us

f
(
σ1(v1)

)
= E

[
v2 | v2 < v1

]
= min{1

2
,
v1
2
} =⇒ σ1(v1) ∈ f−1

(
min{1

2
,
v1
2
}
)

– For bidder 2: By a symmetric argument, for bidder 2 we have

f
(
σ2(v2)

)
= E

[
v1 | v1 < v2

]
=

v2
2

=⇒ σ2(v2) ∈ f−1
(

v2
2

)
Instance 2: Now consider another two-bidder instance I2, where

v1 ∼ Uniform
(
[0, 3

2 ]
)

and v2 ∼ Uniform
(
[0, 100]

)
.

Let σ′(·) =
(
σ′
1(·), σ′

2(·)
)

be an efficient BNE for this second instance. A parallel
revenue-equivalence argument tells us that:

– For bidder 1,

f
(
σ′
1(v1)

)
= E

[
v2 | v2 < v1

]
= v1

2 =⇒ σ′
1(v1) ∈ f−1

(
v1
2

)
,

– For bidder 2,

f
(
σ′
2(v2)

)
= E

[
v1 | v1 < v2

]
= min

{
3
4 ,

v2
2

}
=⇒ σ′

2(v2) ∈ f−1
(
min{ 3

4 ,
v2
2 }

)
We claim that it is impossible for both σ to be an efficient BNE in I1 and

σ′ to be an efficient BNE in I2. To see why, consider the following deviation
arguments:

1. Deviation of bidder 2 in instance I1. Suppose in I1 that bidder 2, whenever
v2 > 3

4 , chooses a random sample a ∼ Uniform([0, 100]) and then plays σ′
2(a)

instead of σ2(v2). Call this strategy σ̃2(·) If σ is indeed a BNE in I1, this
deviation cannot increase bidder 2’s expected utility for any v2.
Now consider the specific value v2 = 7

8 . Under σ, bidder 2’s expected utility
is

Ev1

[
u2

(
σ1(v1), σ2(

7
8 )
)]

= Pr
[
v1 < 7

8

]
× 7

16
<

1

200
,

By deviating to the σ̃2 by sampling a and playing σ′
2(a), bidder 2’s expected

utility when v2 = 7
8 is

Ev1,a

[
u2

(
σ1(v1), σ

′
2(a)

)]
= Pr

[
x
(
σ1(v1), σ

′
2(a)

)
= 2

]
× 1

8 .

For σ to remain an equilibrium, we must therefore have

Pr
[
x
(
σ1(v1), σ

′
2(a)

)
= 2

]
<

1

25
.
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2. Deviation of bidder 1 in instance I2. Next, suppose in I2 that bidder 1, when-
ever v1 > 1

2 , samples b ∼ Uniform([0, 100]) and plays σ1(b) from instance I1.
From the probability bound above, whenever v1 > 1

2 the probability that
bidder 1 wins against σ′

2(v2) is at least 24
25 . In particular, at v1 = 3

4 , bid-
der 1’s expected utility from this deviation is at least(

3

4
− 1

2

)
× 24

25
=

6

25
,

which is substantially larger than the at most 1
100 expected utility bidder 1

achieves under playing σ′
1, contradicting σ′ being a Bayes–Nash equilibrium.

Since we have derived a profitable deviation in one instance assuming that
the other instance has an efficient BNE, it follows that σ and σ′ cannot both be
equilibria of their respective instances under the same payment rule f . Thus any
mechanism where the payment rule is only a function of the winning bid must
have an inefficient Bayes–Nash equilibrium either in instance I1 or I2.

B.3 Review of Relevant Matroid Theory

The matroid structure of feasible allocations play an important role in the
incentive-compatibility and welfare guarantees of the FPA-EQ mechanism in
Section 3. We review in this appendix the properties of matroids that are rele-
vant to our results.

Definition 1 (Matroid). A matroid is a set system (X, I) with ground set X
and independent sets I ⊆ 2X that satisfies:

1. I is non-empty.
2. (Downward closure) If A′ ∈ I and A ⊆ A′, then A ∈ I.
3. (Exchange property) If A,A′ ∈ I with |A′| > |A|, then there exists x ∈ A′ \A

such that A ∪ {x} ∈ I.

For a game structure (I, J,S), call a subset A ⊆ I of transactions feasi-
ble if there exists a feasible allocation (B1, . . . , Bm) that includes precisely the
transactions in A.

Proposition 6 For every game structure (I, J,S), the subset of feasible trans-
actions forms a matroid over I.

Proof. (Sketch.) Non-emptyness holds because the empty set of transactions is
feasible. Downward closure holds because removing transactions from a feasible
allocation cannot destroy feasibility. The exchange property holds from an al-
ternating path argument in the spirit of transversal matroids (see [27, Theorem
1.6.2]).

Matroids have a long list of nice properties.
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Proposition 7 (Lexicographic Optimality) Let (X, I) be a matroid for which
each ground set element x ∈ X has a nonnegative weight wx. If A,A′ ∈ I are
two maximum-weight independent sets, then the multi-sets of non-zero element
weights of A and A′ are identical.

Proof. (Sketch.) We can assume that A,A′ are maximal independent sets, ex-
tending them with (necessarily zero-weight) elements if necessary. Due to the ma-
troid structure (see [27, Corollary 1.2.5]), there is a sequence A = A0, A1, . . . , Al =
A′ such that: (i) each set in the sequence belongs to I; and (ii) each set in the
sequence is derived from the previous one by swapping one element for another.
Because both A and A′ are maximum-weight independent sets, so are all the in-
termediate sets of the sequence. Thus, each swap of the sequence exchanges one
element for another with equal weight. Thus, the multi-sets of element weights
of A and A′ are identical.

The following proposition establishes a “revenue covering” property (in a
sense similar to Hartline et al. [16]) for matroids.

Proposition 8 (Revenue Covering) Let (X, I) be a matroid for which each
ground set element x ∈ X has a nonnegative weight wx, and let A∗ denote a
maximum-weight independent set. Let tx(w−x) denote the minimum value of x’s
weight such that, holding the weights w−x of the other elements fixed, x belongs
to a maximum-weight independent set. Then, for every independent set A,∑

x∈A∗

wx ≥
∑
x∈A

tx(w−x). (3)

Proof. (Sketch.) By the optimality of the greedy algorithm for matroids (see [27,
Theorem 1.2.6]), A∗ remains a maximum-weight independent set even after the
weight of each element x /∈ A∗ is increased to tx(w−x). Given that wx ≥ ti(w−x)
for all x ∈ A∗ (by the definition of the ti’s), the inequality (3) follows from the
optimality of A∗.

B.4 Proof of Theorem 2

Tightness of Theorem 2. Before providing the proof of Theorem 2, we show that
the welfare bound of the theorem is tight.

Proposition 9 (Theorem 2 Is Tight) There exists a game structure, valua-
tion distribution D, and an inclusion-rule-respecting subgame perfect equilibrium
of the FPA-EQ TFM with expected welfare 1 − 1

e times the expected maximum
welfare.

Proof. Take I = {1, 2, 3}, J = {1}, and S1 = {1, 2, 3}. The support of the joint
distribution D is the valuation vectors of the form (1, x, x) for x ∈ [0, 1 − 1

e ].
The marginal distribution of the common value of v2 and v3 is given by the
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CDF F (x) = 1
e

1
1−x on [0, 1− 1

e ]. Thus, with probability 1, the maximum-possible
welfare is 1 (achieved by including the first transaction).

One can check that the following is an IRR SPE. The BP includes the highest-
bidding transaction, breaking ties in favor of the first transaction. The first user
always bids 0. The second and third users always bid truthfully. A calculation
shows that the expected welfare of this IRR SPE is exactly 1− 1

e .

Equivalence of IRR SPE with BNE of Matroid Auctions. The first step of the
proof of Theorem 2 is to establish a correspondence between the IRR SPE of the
FPA-EQ TFM and the Bayes-Nash equilibria of winner-pays-bid matroid auc-
tions. Here’s what we mean by the latter: For a set of users U and a matroid (U, I)
(see Definition 1), the corresponding winner-pays-bid matroid auction is defined
by:

1. Simultaneously, each user i ∈ U submits a nonnegative bid bi.
2. The mechanism chooses an independent set A ∈ I that maximizes the

sum
∑

i∈A bi of the bids of the included users, breaking ties arbitrarily. Users
of A win and the other users lose.

3. Each winner i ∈ A pays its bid bi.

For example, a first-price single-item auction corresponds to the special case of
a winner-pays-bid matroid auction in which the set I contains only the empty
set and all the singleton sets.

Every strategy of a user i ∈ I in the extensive-form game induced by a
TFM (see Section 2.2) induces a bidding strategy σi, with σi(vi) defined as
the action (or distribution over actions) taken by user i in the information set
corresponding to the realization vi of its valuation. Meanwhile, every profile of
BP strategies induces an allocation rule x, where xi(b) denotes the probability
(over any randomness in BPs’ strategies) that user i’s transaction is confirmed
when the user bid vector is b.

For an arbitrary allocation rule x, the corresponding (single-shot) winner-
pays-bid mechanism (x,p) accepts nonnegative bids from users; chooses a feasible
allocation from a probability distribution such that each user i ∈ U is allocated
with probability xi(b); and charges bi to each allocated user and 0 to each
unallocated user. Fron the discussion above, we have:

Proposition 10 Every strategy profile in the extensive-form game induced by
the FPA-EQ TFM is user-outcome-equivalent to the induced bidding strate-
gies σ1(v1), . . . , σn(vn) in the winner-pays-bid mechanism induced by the allo-
cation rule that is induced by BP’s strategies.

By “user-outcome-equivalent” we mean that, for each user, the probability of
allocation and the payment conditional on allocation are identical in the two
scenarios. Note that this notion of equivalence preserves the expected welfare.

We now specialize Proposition 10 to the case of IRR SPE. First, the IRR
condition means that the allocation rule x induced by the BP strategies is the one
that, given users’ bids, selects the feasible allocation with the maximum-possible
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sum of bids (breaking ties arbitrarily). Thus, the winner-pays-bid mechanism
induced by an IRR SPE is a matroid auction. Second, the equilibrium condition
for users’ strategies in the IRR SPE translate to the Bayes-Nash equilibrium
conditions for the induced bidding strategies σ1(v1), . . . , σn(vn) in this matroid
auction.

Lemma 3. For every game structure and valaution distribution, every IRR SPE
of the FPA-EQ TGM is user-outcome-equivalent to a Bayes-Nash equilibrium of
a winners-pay-bid matroid auction (with the same valuation distribution).

As noted above, user-outcome-equivalence implies that the expected welfare of
an IRR SPE and the corresponding Bayes-Nash equilibrium are the same.

The Price of Anarchy of Winner-Pays-Bid Matroid Auctions. Given the equiv-
alence established above, we can complete the proof of Theorem 2 by showing
the following:

Theorem 11 (Matroid Auctions Have Only Near-Optimal Equilibria).
For every matroid (U, I) and valuation distribution, every Bayes-Nash equilib-
rium of the corresponding winner-pays-bid matroid auction has expected welfare
at least 1− 1

e times the expected maximum welfare.

In turn, proving Theorem 11 reduces to showing that winner-pays-bid ma-
troid auctions are “smooth” in a suitable sense. The following definition and
theorem are essentially due to Lucier and Paes Leme [22]; we follow the formal-
ism in Roughgarden et al. [30, Definition 4.5; Theorem 4.6].

Definition 2 (Smooth Auction with Private Deviations [22,30]). For
parameters λ ≥ 0 and µ ≥ 1, an auction with allocation rule x and payment rule
p is (λ, µ)-smooth with private deviations if for every valuation profile v there
exist probability distributions D∗

1(v1), . . . , D
∗
n(vn) over bids such that, for every

bid profile b,∑
i

Ebi∗∼D∗
i (vi)

[ui(bi
∗,b−i)] ≥ λ ·

∑
i

vi · x∗
i (v)− µ ·Rev(b). (4)

In (4), ui(b) = vi · xi(b) − pi(b) denotes quasi-linear utility (as in (2)), x∗(v)
denotes the characteristic vector of a welfare-maximizing feasible solution with
respect to valuation profile v, and Rev(b) =

∑
i pi(b) denotes the auction’s

revenue when the bid vector is b. The “private deviations” qualifier refers to
the fact that each bid distribution D∗

i is permitted to depend only on user i’s
valuation vi, and not on the full valuation profile v.

Theorem 12 (Smoothness Implies Price-of-Anarchy Bounds [22,30]).
If an auction is (λ, µ)-smooth, then for every distribution D over players’ valu-
ations, every Bayes-Nash equilibrium of the auction has expected welfare at least
λ/µ times the expected maximum welfare.
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In light of Theorem 12, the following lemma implies Theorem 11 (and hence,
by Lemma 3, Theorem 2).

Lemma 4 (Matroid Auctions Are Smooth). For every matroid (U, I), the
corresponding winner-pays-bid matroid auction is (1− 1

e , 1)-smooth with private
deviations.

Proof. The proof incorporates elements of the smoothness analysis of first-price
auctions by Syrgkanis and Tardos [38] and the revenue covering analysis of ma-
troid auctions by Hartline et al. [16]. Fix a matroid (U, I); let x and p denote
the allocation and payment rules of the corresponding winner-pays-bid auction.
Fix a valuation profile v for the users of U . For each i ∈ U , define D∗

i as the
distribution with density 1/(vi − x) on support [0, (1− 1/e)vi].

To verify the smoothness inequality (4), fix a bid vector b. Denote by ti(b−i)
the minimum value z for i’s bid such that xi(z,b−i) = 1. To bound Ebi∗∼D∗

i
[ui(bi

∗,b−i)],
we consider two cases. First, if vi · (1 − 1/e) ≤ ti(b−i), then because bi

∗ ∼ D∗
i

is at most vi with probability 1 and (x,p) is ex post individually rational,
Ebi∗∼D∗

i
[ui(bi

∗,b−i)] ≥ 0. Second, if vi · (1 − 1/e) > ti(b−i), then by similar
reasoning,

Ebi∗∼D∗
i
[ui(bi

∗,b−i)] ≥
∫ (1−1/e)vi

ti(b−i)

(vi − z) · dz

vi − z
=

(
1− 1

e

)
vi − ti(b−i).

In this case, because the left-hand side is nonnegative and xi(v) ∈ [0, 1], we also
have

Ebi∗∼D∗
i
[ui(bi

∗,b−i)] ≥
(
1− 1

e

)
vi · x∗

i (v)− ti(b−i) · x∗
i (v).

Summing this inequality over all i ∈ I and applying Proposition 8, we have

Ebi∗∼D∗
i
[ui(bi

∗,b−i)] ≥
(
1− 1

e

)∑
i∈I

vi · x∗
i (v)−

∑
i∈I

ti(b−i)x
∗
i (v)

≥
(
1− 1

e

)∑
i∈I

vi · x∗
i (v)−

∑
i∈I

pi(b),

which shows that (4) holds with λ = 1− 1
e and µ = 1, completing the proof.
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