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Given the low throughput of blockchains like Bitcoin and Ethereum, scalability — the ability to process an

increasing number of transactions — has become a central focus of blockchain research. One promising

approach is the parallelization of transaction execution across multiple threads. However, achieving efficient

parallelization requires a redesign of the incentive structure within the fee market. Currently, the fee market

does not differentiate between transactions that access multiple high-demand resources versus a single low-

demand one, as long as they require the same computational effort. Addressing this discrepancy is crucial for

enabling more effective parallel execution.

In this work, we aim to bridge the gap between the current fee market and the need for parallel execution

by exploring alternative fee market designs. To this end, we propose a framework consisting of two key

components: a Gas Computation Mechanism (GCM), which quantifies the load a transaction places on the

network in terms of parallelization and computation, measured in units of gas, and a Transaction Fee Mechanism
(TFM), which assigns a price to each unit of gas. We also introduce a set of desirable properties for a GCM,

present multiple candidate mechanisms, and evaluate them against the properties. One promising candidate

emerges: the weighted area GCM. Notably, this mechanism can be seamlessly composed with existing TFMs,

such as EIP-1559. While our exploration primarily focuses on the execution component of the fee, which

directly relates to parallel execution, we also outline how it could be integrated with fees associated with

other factors, such as storage and data bandwidth, by drawing a parallel to a multi-dimensional fee market.
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1 Introduction
Scalability — the ability to process more transactions efficiently — has become a central focus in

blockchain research, especially given the low throughput of many existing networks. Ethereum, for

example, is constrained by its single-threaded execution model, limiting transaction throughput.

One promising way to enhance scalability is by parallelizing transaction execution across multiple

threads, taking advantage of the multi-core processors common in modern hardware. However,

achieving the full efficiency gains of parallel execution requires rethinking fee market design to

better account for resource contention and scheduling constraints.

A transaction fee mechanism (TFM) is a core component of any blockchain protocol, determining

which pending transactions should be processed and what users must pay for the privilege of

having their transactions executed. Traditional fee mechanisms, like Bitcoin’s first-price auction,

involve users submitting bids with their transactions, and the transactions with the highest bids

per computation are included in the next block. Ethereum initially used a similar purely first-

price auction-based model but switched to the more sophisticated EIP-1559 mechanism in 2021,

which introduces a fluctuating base fee based on network demand, aiming to improve incentive

compatibility and reduce price volatility [10]. Most of the existing literature on transaction fee

mechanisms focuses on settings where transactions are executed sequentially and therefore does

not account for resource contention, which is crucial in parallel execution environments.

Thus, viewed in isolation, these traditional TFMs are ill-suited to the complexities introduced by

parallel transaction execution. They price transactions solely based on their computational cost,

without distinguishing between those that access a single resource and those that interact with

multiple, potentially contested resources. This pricing model works in a single-threaded environ-

ment but fails to capture the nuances of parallel execution, where transactions may impose vastly

different constraints on resource scheduling. Transactions that touch multiple high-contention

resources can introduce bottlenecks, while those interacting with isolated resources are far easier

to schedule efficiently.

Ethereum has yet to adopt parallel execution, but several blockchains, such as Solana, Aptos,

and Sui, already employ parallel transaction processing [4, 40, 43, 53, 56]. However, many of these

networks have yet to implement feemodels that fully account for the challenges of parallel execution.

Sui and Solana have introduced fee markets tailored to parallelization, but these mechanisms require

users to engage in first-price auctions for congested resources [37, 41]. As a result, these fee markets

demand a high level of sophistication from users to effectively optimize their fee settings and are

also not incentive-compatible. The requirements for an effective fee market that is suitable for

parallel execution and the design of such a market have so far remained unresolved.

Our Contributions. In this work, we aim to bridge this gap by outlining the requirements for

such a fee market and evaluating possible candidates. We outline our main contributions below:

• We introduce a framework with two main components: a Gas Computation Mechanism
(GCM), which measures the load a transaction imposes on the network in terms of both par-

allel execution and computation, expressed in units of gas, and a Transaction Fee Mechanism

(TFM), which determines the cost associated with each unit of gas.

• We introduce a list of desirable properties for a GCM and evaluate against them a set of

mechanisms that we propose.

• Our analysis identifies a promising candidate: the weighted area GCM. Importantly, this

mechanism is not only an effective GCM, achieving a large subset of the outlined properties,

but it is equally important that it can be easily integrated with existing TFMs, such as

EIP-1559, inheriting their properties.



2 Bahar Acilan, Andrei Constantinescu, Lioba Heimbach, and Roger Wattenhofer

2 Model
We consider a universe consisting of several stateful resources (e.g., user accounts, storage addresses
of smart contracts). Each resource can be thought of as a system global variable. We write R for the

set of resources. For analysis purposes, we assume that R is infinite. A transaction is a sequence of

elementary instructions performing computation and interacting with the resources. Some of these

operations access a given target resource (e.g., read its value, write to it). For simplicity, we assume

that the following are known in advance and supplied with the transaction:

• The non-empty set of resources 𝑅 ⊆ R the transaction accesses, or an overestimate of it.
1

• The total time 𝑡 > 0 it takes to execute the transaction on a single thread.
2

Transactions execute concurrently, but atomically, meaning that the overall effect of executing a

batch of transactions should also be achievable by a sequential, single-core execution. For simplicity,

we restrict to concurrent schedules following a simple lock-based execution policy: each resource has

a lock associated with it; whenever a thread wants to execute a transaction, it first locks all required

resources, then executes the transaction, and then releases the locks. We assume that acquiring (and

similarly releasing) the required locks happens simultaneously and takes no additional time. These

simplifications have a desirable side-effect: 𝑡 and 𝑅 for each transaction now uniquely determine the

set of admissible concurrent schedules, allowing us to ignore other details about the transactions:

Definition 2.1 (Transaction). A transaction tx is specified through a tuple (𝑡, 𝑅), where 𝑡 > 0

denotes the time required to execute the transaction and 𝑅 ≠ ∅ represents the set of resources

the transaction demands, which are locked for the duration of the transaction. We will sometimes

write 𝑡 (tx) and 𝑅(tx) for 𝑡 and 𝑅 respectively.

To give the tuple associated with a transaction, we will write tx ≃ (𝑡, 𝑅). Note that different
transactions might have the same associated tuple. We will also write tx1 ≃ tx2 to mean that the

two transactions have the same associated tuple.

In Figure 1, we illustrate a sample transaction tx ≃
(3, {𝑟2, 𝑟3}). Transaction tx thus takes 3 units of time

to execute and utilizes resources 𝑟2 and 𝑟3. We illus-

trate this by a rectangle of corresponding length (i.e.,

time) and width (i.e., resources). Throughout, we will

illustrate transactions in this manner to aid in visual-

izing concepts and results. Note that we will always

represent transactions as rectangles (i.e., they use con-

secutive resources). In reality, this is, of course, not the

case. Importantly, all our results also hold in the more

general setting where a transaction can use any subset

of resources.
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Fig. 1. Illustration of a sample transaction
tx ≃ (3, {𝑟2, 𝑟3}).

A blockchain is a sequence of blocks comprising bundles of transactions: 𝐵1, . . . , 𝐵𝑘 . The system

starts in some predetermined initial state. The blocks are executed in order starting from the oldest

(the genesis block 𝐵1), successively changing the system’s state. For simplicity, we assume no

1
In Ethereum, transaction accesses are generally not known in advance. Instead, transactions can execute arbitrary logic

(constrained by a maximum amount of computational effort) and their execution depends on the blockchain’s state at the

time of execution. Ethereum currently supports optional access lists that allow transactions to specify their accesses [12].

This optional list could be made mandatory to provide an overestimate of accesses. Additionally, it is worth noting that in

other blockchains (e.g., Solana [33] and Sui [32]), an overestimate of accesses is typically known in advance.

2
In reality, the time to execute a transaction depends on the hardware it is executed on. Thus, time is estimated in Ethereum

by assigning each operation a computational effort. Then the sum of the computational effort of a transaction’s operation

can be seen as a proxy for time.
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cross-block parallelism, so the execution of a block only starts after the previous block’s execution

has been completed. However, the execution of transactions inside a block happens concurrently.

The system’s state after executing 𝐵𝑘 is the current system state. Users wanting to change the

system’s state compete for inclusion in the next block 𝐵𝑘+1 and have to pay a fee if successfully
included. Desirably, the fee should be higher for more complex transactions and higher during

periods of high demand due to limited block space. These requirements are typically decoupled

and ensured through different means:

(1) A transaction’s complexity is quantified in units of gas:3 the more complex a transaction is,

the more gas it consumes. Gas encompasses multiple components such as execution, storage

space, and data bandwidth. For our purposes, we will only be concerned with execution
gas.4 Currently, the execution gas acts as a proxy for the execution time 𝑡 ,5 but this need

not be the case, as we will demonstrate in our paper.

(2) The fair competition for block space is ensured through a transaction fee mechanism (TFM):
users submit transactions they would like to be included in the next block together with

bids of what they would be willing to pay per unit of gas. Importantly, block space is

limited, i.e., there is limited space for transactions. The mechanism then determines the set

of transactions to be included in the block, together with a price per unit of gas to be paid

by each included transaction (potentially not the same for all transactions).
6

As such, an included transaction consuming 𝑔 gas units at a price of 𝑝 per unit of gas will have

to pay a fee of 𝑔 · 𝑝 (generally in the blockchain’s native currency).

To keep the separation of concerns in (1) and (2), we will keep the formula for the fee 𝑔 · 𝑝 and

instead vary the gas computation mechanism used to determine 𝑔:

Definition 2.2 (Gas Computation Mechanism). A gas computation mechanism (GCM) takes as

input a set of transactions 𝑇 to be included in a block and determines in a deterministic manner

the amount of gas consumed by each transaction tx ∈ 𝑇 , written gas𝑇 (tx).

Currently deployed GCMs associate a fixed, predetermined gas consumption with each transac-

tion, independent of the specific resources accessed by the transaction, making them unsuitable for

a parallel execution environment. In particular, this is true for Ethereum’s current GCM:

Definition 2.3 (Current GCM). Given a set of transactions 𝑇 and a transaction tx ∈ 𝑇 with

tx ≃ (𝑡, 𝑅), the current GCM computes the amount of gas used by tx as follows:

gas𝐶𝑇 (tx) := 𝑡 .

Since this does not depend on 𝑇 , we often drop the subscript.

Our goal is to ensure that fees accurately reflect the parallelizability of transactions. Therefore,

the gas consumption calculated for a transaction should depend on the set of resources it accesses

and may also be influenced by factors external to the transaction itself (like interactions between

transactions).

3 GCM Properties
Next, we outline several desirable properties that a GCM should possess to provide the right

incentives for parallelization. These properties should be viewed as a wishlist — as will become

clear later on, no single mechanism can satisfy all of them simultaneously.

3
For Ethereum, the unit is called wei.

4
From this point forward, gas will refer specifically to execution gas.

5
Throughout we will assume that execution gas exactly corresponds to time.

6
There are several other components of a TFM, but for the level of detail we need here, this suffices.
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Fig. 2. Illustration of Property 1, where 𝑇 = ∅,
represents a sample tx1 and represents a sample
tx2.
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Fig. 3. Illustration of Property 2, where 𝑇 = ∅,
represents a sample tx1 and represents a sample
tx2.
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Fig. 4. Illustration of Property 4, where 𝑇 = ∅, 𝑇1 =
{tx1, 𝑡𝑥2}, and 𝑇2 = 𝑇1 ∪ {tx3}. Here, represents
a sample tx1, represents a sample tx2, and
represents a sample tx3.
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Fig. 5. Illustration of Property 5, where 𝑇 = ∅,
represents a sample tx3, while represents a sam-
ple tx1 and represents a sample tx2. The darker
shaded areas indicate when a transaction operates
on a resource.

We begin with two natural monotonicity properties, one for resources and one for time. First, a

transaction that requires a subset of the resources used by another transaction, while taking the

same amount of time, should consume no more gas (Property 1 and Fig. 2). Similarly, a transaction

that requires no more execution time than another, assuming both involve the same set of resources,

should consume no more gas (Property 2 and Fig. 3).

Property 1 (Resource Sensitivity). Given a set of transactions 𝑇 and two transactions tx1 ≃
(𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2), both not in 𝑇 , such that 𝑡1 = 𝑡2 and 𝑅1 ⊆ 𝑅2:

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx2 } (tx2).

Property 2 (Time Sensitivity). Given a set of transactions 𝑇 and two transactions tx1 ≃ (𝑡1, 𝑅1)
and tx2 ≃ (𝑡2, 𝑅2), both not in 𝑇 , such that 𝑡1 ≤ 𝑡2 and 𝑅1 = 𝑅2:

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx2 } (tx2).

The previous two properties fix one dimension while varying the other. One can also define a

seemingly stronger property that allows both to vary, as follows:

Property 3 (Resource-Time Sensitivity). Given a set of transactions 𝑇 and two transactions
tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2), both not in 𝑇 , such that 𝑡1 ≤ 𝑡2 and 𝑅1 ⊆ 𝑅2:

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx2 } (tx2).
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Intuitively, if tx1 ≲ tx2, by which we mean 𝑡 (tx1) ≤ 𝑡 (tx2) and 𝑅(tx1) ⊆ 𝑅(tx2), then tx1 should
cost no less than tx2. However, an attentive reader will observe that the former two are collectively

equivalent to the latter (the proof and all subsequent omitted proofs can be found in the appendix):

Lemma 3.1. Property 3 holds if and only if Properties 1 and 2 hold.

Let us now take a moment to briefly evaluate why Properties 1 to 3 are not merely intuitive, but

their violation can lead to harmful consequences and misaligned incentives: suppose tx1 ≲ tx2 and
𝑇 is a set of transactions containing neither of the two. If gas𝑇∪{tx1 } (tx1) > gas𝑇∪{tx2 } (tx2), a user
intending to submit tx1 might instead pad tx1 with unnecessary instructions and declare a larger

access list to decrease the gas consumption. This would paradoxically reduce the gas usage and,

assuming a reasonable TFM is used to compute transaction fees, also lower the transaction fee.

For any of the three properties above, we say that the property is strictly satisfied if for tx1 ; tx2
the conclusion inequality holds strictly. Note that properties holding strictly are even more desirable

with respect to the reasoning above: replacing a transaction with a “larger” one is then not only

no better but actively worse. Unsurprisingly, Lemma 3.1 also holds for the strict versions of the

properties:

Lemma 3.2. Property 3 holds strictly if and only if Properties 1 and 2 hold strictly.

Next, we introduce another desirable monotonicity property, this time with a different emphasis:

if two sets of transactions satisfy 𝑇1 ⊆ 𝑇2, the transactions in 𝑇1 should collectively consume no

more gas than those in𝑇2 (Property 4 and Fig. 4). To formalize this, given a set of transactions𝑇 and

a subset𝑇 ′ ⊆ 𝑇 , write gas𝑇 (𝑇 ′) := ∑
tx′∈𝑇 ′ gas𝑇 (tx′) for the total gas consumed by the transactions

in 𝑇 ′
when included in the set 𝑇 that constitutes a block.

Property 4 (Set Inclusion). Given a set of transactions 𝑇 and two sets of transactions 𝑇1 ⊆ 𝑇2,
disjoint from 𝑇 :

gas𝑇∪𝑇1 (𝑇1) ≤ gas𝑇∪𝑇2 (𝑇2).

To understand why this property is desirable, consider a GCM for which it does not hold. Then,

there must be a scenario where a set of transactions can reduce their total gas consumption by

adding additional transactions. This situation could be exploited through collusion by the users

originating these transactions. Importantly, such a possibility is undesirable, as it would primarily

benefit sophisticated users capable of orchestrating such arrangements.

Similarly to before, we say that Property 4 holds strictly if for 𝑇1 ≠ 𝑇2 the inequality in the

conclusion holds strictly, which is desirable for reasons similar to those discussed above.

We now move on to more complex properties. Given two transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃
(𝑡2, 𝑅2), a transaction tx3 is their sequential composition (or, more simply, concatenation), if it executes
the steps of tx1 followed by the steps of tx2. Note that, in this case tx3 ≃ (𝑡1 + 𝑡2, 𝑅1 ∪ 𝑅2). Our
next property states that the concatenation of two transactions should consume no less gas than

submitting them individually (Property 5 and Fig. 5). The two individual transactions perform

the same actions as their concatenation, but not atomically, with no guarantee of their relative

ordering or control over what happens between them. Naturally, enforcing atomicity and ordering

limits the set of admissible concurrent schedules and requires resources to remain locked over

longer continuous timespans. In particular, tx3 requires the resources in 𝑅1 ∪ 𝑅2 to be locked over a

continuous span of 𝑡1+𝑡2 units, while tx1 and tx2 submitted individually only require exclusive access

to resources in 𝑅1 for 𝑡1 units and to resources in 𝑅2 for 𝑡2 units. Hence, the “bigger” transaction is

at least as hard to schedule as its two constituent “parts” and should hence consume no less gas.
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Fig. 6. Illustration of optimal schedules for a set of four transactions: tx1 ≃ (2, {𝑟2, . . . , 𝑟8}) (shown in ),
tx2 ≃ (4, {𝑟2, 𝑟3}) (shown in ), tx3 ≃ (5, {𝑟4, 𝑟5, 𝑟6}) (shown in ), and tx4 ≃ (2, {𝑟7, 𝑟8}) (shown in ). In
the left plot, we show the optimal schedule for 𝑛 = 3, and in the right plot for 𝑛 = 2. Notice how for 𝑛 = 2, we
cannot schedule the three transactions tx2, tx3, and tx4 to be executed in parallel even though they access
pairwise-disjoint sets of resources.

Property 5 (Transaction Bundling). Consider a set of transactions 𝑇 and three transactions
tx1, tx2, tx3 ∉ 𝑇 such that tx3 is the concatenation of tx1 and tx2, then:

gas𝑇∪{tx1,tx2 } (tx1) + gas𝑇∪{tx1,tx2 } (tx2) ≤ gas𝑇∪{tx3 } (tx3) .

Let us again consider the risks of having a GCM that does not satisfy the previous property.

In such a scenario, a group of users could collude to collectively consume less gas by combining

their transactions into a single transaction rather than processing them individually. This outcome

would be undesirable, particularly because it disproportionately benefits sophisticated users, as we

outlined before. Note that this could even be the case for a single user wanting to submit multiple

transactions.

We say that Property 5 holds strictly if the inequality in the conclusion holds strictly, which is

again more desirable than the basic version of the property.

Next, we would like to formalize the intuitive idea that a transaction’s gas consumption fairly

reflects its impact on the execution time. To do so, we first need to formalize scheduling more

precisely. Let 𝑛 ≥ 2 be the number of available threads.

Definition 3.3. A scheduler (for 𝑛 threads) takes as input a set of transactions 𝑇 , and outputs a

concurrent schedule using at most 𝑛 threads to execute all transactions in 𝑇 . This schedule specifies

the operations each thread should perform and the order in which they should be performed.

The following conditions should hold for any generated schedule:

• Each transaction is assigned to a single thread;

• A thread can work on only one transaction at a time;

• There is no preemption: once a thread starts executing a transaction, it completes the

transaction without context switching;

• Transactions with overlapping resource access sets cannot be executed in parallel: one must

finish before the other can begin.
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Note that some of these conditions are natural for scheduling in general, while others arise from

us assuming the simple lock-based execution policy.7 For our purposes, we are not concerned with

which thread executes which transaction, but only that no more than 𝑛 transactions ever execute

simultaneously (so we can draw concurrent schedules as in Fig. 6, which illustrates the concept). To

determine gas consumption, our notation will need to capture even less — given a scheduler 𝑠 (for 𝑛

threads), we write 𝑣𝑠 (𝑇 ) for the makespan of the schedule produced by 𝑠 for the set of transactions

𝑇 (i.e., the time required to execute the schedule in parallel using 𝑛 threads). It is instructive to read

the paper having in mind as a prime example 𝑠 being the optimal scheduler (for 𝑛 threads), which

returns a schedule for 𝑛 threads that minimizes the makespan. However, implementing such a

scheduler is computationally prohibitive in practice, so greedy heuristics are typically used instead.

To make our results apply even to non-optimal schedulers, we assume a set of minimal, reasonable

properties for the scheduler:

(S1) Monotonicity in 𝑇 : for any 𝑇 ⊆ 𝑇 ′
, we have 𝑣𝑠 (𝑇 ) ≤ 𝑣𝑠 (𝑇 ′). Intuitively, scheduling no fewer

transactions takes no less time.

(S2) Monotonicity under bundling: consider any set of transactions 𝑇 and three transactions

tx1, tx2, tx3 ∉ 𝑇 , such that tx3 is the concatenation of tx1 and tx2, then we have 𝑣𝑠 (𝑇 ∪
{tx1, tx2}) ≤ 𝑣𝑠 (𝑇 ∪ {tx3}). Intuitively, replacing two transactions by their concatenation

makes scheduling no easier.

(S3) Monotonicity in 𝑡 and 𝑅: consider any set of transactions𝑇 and two transactions tx1 ≃ (𝑡1, 𝑅1)
and tx2 ≃ (𝑡2, 𝑅2), both not in 𝑇 , such that 𝑡1 ≤ 𝑡2 and 𝑅1 ⊆ 𝑅2, i.e., tx1 ≲ tx2, then we have

𝑣 (𝑇 ∪ {tx1}) ≤ 𝑣 (𝑇 ∪ {tx2}). Intuitively, “larger” transactions are no easier to schedule.

(S4) Empty set: 𝑣 (∅) = 0.

The optimal scheduler can be easily seen to satisfy these properties.
8 Our positive results will

apply to any scheduler satisfying the properties, while our negative results will be for the optimal
scheduler itself. Henceforth, we drop the 𝑠 superscript for brevity and follow this convention for

who 𝑠 is.

An attentive reader may notice that (S1)–(S3) partially resemble Properties 1 to 5 for GCMs. This

resemblance is not coincidental, but it is important to emphasize that they address different aspects:

the former are properties of the scheduler, while the latter are properties of the GCM. A GCM
can, in fact, satisfy Properties 1 to 5 without depending on the scheduler at all (e.g., the current

mechanism). Conversely, for mechanisms defined in terms of the scheduler, (S1)–(S3) play a crucial

role in establishing their properties, including Properties 1 to 5.

Armed as such, we now return to our latest goal: formalizing the idea that a transaction’s gas

consumption should fairly reflect its impact on execution time. We do this as follows:

Property 6 (Scheduling Sensitivity). Given a set of transactions 𝑇 and two transactions tx1
and tx2, both not in 𝑇 , such that 𝑣 (𝑇 ∪ {tx1}) < 𝑣 (𝑇 ∪ {tx2}):9

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx2 } (tx2).

7
Using locks is one way to enforce this policy, but in our case — where the contents of a block are known before execution

commences — it can also be achieved without locks, as long as the execution environment ensures that threads strictly

follow a pre-determined schedule. We chose this name because it is largely suggestive of the intended semantics.

8
All but the second straightforward, while for the second, any admissible schedule for 𝑇 ∪ {tx3} can be turned into a

same-makespan admissible schedule for𝑇 ∪ {tx1, tx2} by replacing tx3 by tx1 followed immediately by tx2.
9
Interestingly, unlike our earlier properties, writing 𝑣 (𝑇 ∪ {tx1}) ≤ 𝑣 (𝑇 ∪ {tx2}) here may be too strong, as applying the

property twice would then imply that if 𝑣 (𝑇 ∪ {tx1}) = 𝑣 (𝑇 ∪ {tx2}) , then gas𝑇∪{tx1} (tx1 ) = gas𝑇∪{tx2} (tx2 ) , which is

not necessarily desirable. Writing 𝑣 (𝑇 ∪ {tx1}) ≤ 𝑣 (𝑇 ∪ {tx2}) would also unintentionally make the strict and non-strict

versions of the property incomparable.
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Intuitively, transactions with higher marginal contributions to the execution time should consume

no less gas.
10
As usual, we define a strict version of this property, where the latter inequality also

becomes strict (i.e., higher marginal contributions in execution time imply higher gas consumption).

One might be tempted to believe that Scheduling Sensitivity implies Resource-Time Sensitivity.

However, proving this requires a non-strict inequality in the premise 𝑣 (𝑇 ∪ {tx1}) < 𝑣 (𝑇 ∪ {tx2}).
There is a second way in which gas consumption should adequately indicate the effort required

to execute transactions (Property 7). Specifically, the gas consumption of all transactions in a block

should collectively account for the total time needed to execute the block. This can be seen as

properly tracking the time consumed by the execution environment to execute the block.

Property 7 (Efficiency). Consider a set of transactions 𝑇 and recall the definition gas𝑇 (𝑇 ) =∑
tx∈𝑇 gas𝑇 (tx), then:

gas𝑇 (𝑇 ) = 𝑣 (𝑇 ).

Next, we introduce two practical properties. The first requires that transaction submitters be

able to estimate a transaction’s gas consumption in advance. We formalize this by requiring that

gas𝑇 (tx) does not depend on 𝑇 (Property 8).

Property 8 (Easy Gas Estimation). Given two sets of transactions𝑇1 and𝑇2 and a transaction tx
belonging to neither 𝑇1 nor 𝑇2:

gas𝑇1∪{tx} (tx) = gas𝑇2∪{tx} (tx).

This property ensures a good user experience by making it easy for users to estimate gas usage.

If the gas consumption of a transaction depended on the remaining transactions in the block, this

estimation would become significantly more complex. In general, we aim to keep gas estimation

straightforward to avoid giving an advantage to more sophisticated users. Additionally, as we

will see later, a GCM satisfying this property can be seamlessly composed with existing TFMs,

retaining their desirable properties (see Section 6). Sadly, as one might have already guessed, Easy

Gas Estimation is incompatible with Scheduling Sensitivity (except for constant mechanisms, i.e.,

GCMs that return a constant independent of 𝑇 and tx), and also incompatible with Efficiency:

Theorem 3.4. Easy Gas Estimation (Property 8) is:
(1) Incompatible with Scheduling Sensitivity (Property 6) unless using a constant GCM.11

(2) Incompatible with Efficiency (Property 7).

Proof. Consider a mechanism𝑀 with Easy Gas Estimation; i.e., gas𝑀 (tx) is meaningful without

a subscript for the set of transactions 𝑇 in the block. Then:

(1) Assume that𝑀 has Scheduling Sensitivity; we will show that𝑀 is a constant mechanism.

Call two transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2) incomparable if neither 𝑅1 ⊆ 𝑅2
nor 𝑅2 ⊆ 𝑅1. As a first step, we will show that if tx1 and tx2 are incomparable, then

gas𝑀 (tx1) = gas𝑀 (tx2). To show this, assume that 𝑅1 ⊈ 𝑅2. We will show that then

gas𝑀 (tx1) ≥ gas𝑀 (tx2). Exchanging the roles of tx1 and tx2 will then give the conclusion.

Let 𝑟 ∈ 𝑅1 \ 𝑅2 and tx3 be another transaction such that tx3 ≃ (𝑡3, {𝑟 }) for some 𝑡3 > 𝑡2, and

define 𝑇 = {tx3}. Then, for any number of threads 𝑛 ≥ 2 and any scheduler that is optimal

for two transactions, we have 𝑣 (𝑇 ∪ {tx1}) = 𝑡1 + 𝑡3 > 𝑡3 = 𝑣 (𝑇 ∪ {tx2}). By Scheduling

Sensitivity, this implies that gas𝑀 (tx1) ≥ gas𝑀 (tx2).
10
Technically, what we wrote above in Property 6 are not marginal contributions, but can be made to be by subtracting

𝑣 (𝑇 ) from both sides of the inequality in the antecedent.

11
Constant GCMs satisfy Scheduling Sensitivity, but not Strict Scheduling Sensitivity.
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We now know that 𝑀 associates the same gas consumption to any pair of incomparable

transactions. Armed as such, consider two arbitrary transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃
(𝑡2, 𝑅2). Let 𝑟 be an arbitrary resource not in 𝑅1 ∪ 𝑅2 and tx3 be a transaction such that

tx3 ≃ (1, {𝑟 }). Since 𝑅1 and 𝑅2 are non-empty, one can easily see that tx3 is incomparable

with both tx1 and tx2, from which gas𝑀 (tx1) = gas𝑀 (tx3) = gas𝑀 (tx2).
(2) Assume for a contradiction that 𝑀 has Efficiency, then for any transaction tx ≃ (𝑡, 𝑅)

we have gas𝑀 (tx) = gas𝑀∅ ({tx}) = 𝑣 ({tx}) = 𝑡 . Hence, by definition, 𝑀 is the current

mechanism, which can be easily seen to not satisfy Efficiency: assume 𝑛 ≥ 2 threads and

consider the set of transactions 𝑇 = {tx1, tx2} where tx1 ≃ (1, {𝑟1}) and tx2 ≃ (1, {𝑟2}). In
this case, gas𝑀 (𝑇 ) = gas𝑀 (tx1) + gas𝑀 (tx1) = 1 + 1 = 2 ≠ 1 = 𝑣 (𝑇 ). □

Our second practical property requires that gas consumption be efficiently computable, i.e., in

polynomial time (Property 9). A GCM that does not satisfy this property would be unsuitable for

the blockchain context, where gas computation is intended to be a straightforward component.

Property 9 (Poly-time Computable). There exists a polynomial-time algorithm that takes as
input a transaction set 𝑇 and a transaction tx and outputs gas𝑇∪{tx} (tx).

4 GCM Proposals
We now propose multiple GCM designs.

12
Motivated by the incompatibilities in Theorem 3.4, these

fall into two categories:

(C1) Mechanisms with Easy Gas Estimation, in which each transaction’s gas consumption is

computed in isolation. Such mechanisms tend to be both straightforward and attractive but

can achieve neither Scheduling Sensitivity
13
nor Efficiency.

(C2) Mechanisms without Easy Gas Estimation, which, given a set of transactions 𝑇 , rely on

𝑣 (𝑇 ) or, more generally, (𝑣 (𝑇 ′))𝑇 ′⊆𝑇 ′ to holistically calculate gas consumptions for the

block 𝑇 , requiring knowledge of the entire block. Instead, these mechanisms aim to achieve

Scheduling Sensitivity and/or Efficiency.

4.1 Mechanisms with Easy Gas Estimation
We already introduced the current GCM (Definition 2.3). For the next mechanism, we assume a

globally available vector of positive weights for the resources (𝑤𝑟 )𝑟 ∈R . For instance, these weights
could all be 1. Alternatively, higher-weight resources could correspond to resources under higher

(historical) demand. For our purposes, we only need to assume that the weights are known and do

not depend on the block being built. In practice, one could update the weights between blocks to

accurately reflect resource demand (the exact details are not relevant here; see Section 6 for further

discussion). Given the weights, we define:

Definition 4.1 (Weighted Area GCM). Given a set of transactions 𝑇 and a transaction tx ∈ 𝑇 with

tx ≃ (𝑡, 𝑅), the Weighted Area GCM computes the amount of gas used by tx as follows:

gasWA
𝑇 (tx) := 𝑡 ·

(
1 +

∑︁
𝑟 ∈𝑅

𝑤𝑟

)
(1)

Since this does not depend on 𝑇 , we often drop the subscript.

12
Note again that we will solely consider deterministic mechanisms. This is common for blockchain fee markets given the

difficulty of having a true source of randomness on blockchains.

13
Except for constant GCMs.
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To gain intuition, it is instructive to consider the former case, where all weights are 1, i.e., the

unweighted areamechanism, in which case Eq. (1) becomes gasWA
𝑇

(tx) = 𝑡 · (1 + |𝑅 |). This mechanism

can also be viewed as the addition of two terms: the current term, i.e., the gas consumption of tx
under the current GCM, namely 𝑡 , and the area term, i.e., the area of a 𝑡 × |𝑅 | rectangle (which is also

how we draw transactions in our diagrams). The current term is helpful to ensure no transaction

ever costs too little when the weights of all resources accessed by a transaction are too close to

zero.
14

The area term, on the other hand, which

is the main component, intuitively corre-

sponds to “negated throughput.” That is,

executing the transaction requires holding

|𝑅 | locks for 𝑡 time units, during which no

other transactions requiring any of those

resources can execute. In Fig. 7, we illus-

trate this idea. Transaction tx prevents the
execution of other transactions across its

entire resource set but only utilizes each re-

source for a short period. While the current

GCM charges a transaction based solely on

its total computation time (i.e., the height

of the rectangle), the weighted area GCM
also accounts for the resources for which

it “negated throughput”, i.e., the area occu-

pied by the transaction. This occupied area

prevents other transactions using the same

resources from being scheduled in parallel.

t
i
m
e

6

r1 r2 r3 r4 r5 r6 r7 r8

resources

Fig. 7. Illustration of a worst-case transaction in terms
of parallelizability. Transaction tx ≃ (6, {𝑟2, . . . , 𝑟7})
(shown in ) takes 6 units of time to execute and
accesses 6 resources. However, the transaction only
operates on each resource for one unit of time each
(shown in ).

Along the same line of reasoning, to further reinforce why this mechanism is a reasonable choice,

consider a transaction set𝑇 . The sum
∑

tx∈𝑇 𝑡 (tx) · |𝑅(tx) | represents the “total area” of transactions
in 𝑇 . Dividing this term by the number of resources used in 𝑇 provides a lower bound on 𝑣 (𝑇 ),
serving as a rough proxy that does not require knowledge of 𝑇 when computing individual gas

consumptions. Finally, we note that, even in the case of non-unit weights, the term weighted area
remains meaningful, as the area term still corresponds to the area of the respective rectangle in our

diagrams if we give the column of each resource 𝑟 ∈ R a width of𝑤𝑟 .

4.2 Mechanisms without Easy Gas Estimation
We now switch gears towards mechanisms without Easy Gas Estimation that instead aim to achieve

Scheduling Sensitivity and/or Efficiency. Intuitively, for a set of transactions 𝑇 , such mechanisms

should start from 𝑣 (𝑇 ) and take each transaction’s marginal contribution towards 𝑣 (𝑇 ) as its gas
consumption. This, however, has to be done carefully, as, e.g., simply looking for each transaction

tx ∈ 𝑇 at 𝑣 (𝑇 ) − 𝑣 (𝑇 \ {tx}) does not help. Note that one can easily construct cases where removing

any one transaction from 𝑇 does not change 𝑣 (𝑇 ), so all reported numbers will be 0. However, all

these numbers being zero does not mean that no transaction contributes to 𝑣 (𝑇 ); it just means that

we also have to consider removing multiple transactions to see the differences. This gives us the

idea to look at the marginal contribution of each transaction tx ∈ 𝑇 when added to each possible

14
This term has a practical motivation. In reality, transactions will be scheduled on a small finite number of threads. Thus,

even if they do not access any high-demand resource, they occupy space in the schedule proportional to their execution

time. Note, moreover, that this term could technically be omitted, and our results would still hold.
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subset 𝑆 ⊆ 𝑇 \ {tx}, and not just to 𝑆 = 𝑇 \ {tx} as before. Formally, we would like to compute tx’s
gas consumption as an aggregate of (𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆))𝑆⊆𝑇 \{tx} . We next present two mechanisms

based on this idea: the Shapley (Definition 4.2) and Banzhaf (Definition 4.4) GCMs, inspired by

corresponding concepts in cooperative game theory.

Definition 4.2 (Shapley GCM). Given a set of transactions 𝑇 consisting of |𝑇 | = 𝑛 transactions

and a transaction tx ∈ 𝑇 , the Shapley GCM computes the amount of gas used by tx as follows:

gas𝑆𝑇 (tx) :=
1

𝑛!

∑︁
𝜎

[
𝑣 (𝑃𝜎tx ∪ {tx}) − 𝑣 (𝑃𝜎tx)

]
(2)

=
∑︁

𝑆⊆𝑇 \{tx}

|𝑆 |! · (𝑛 − |𝑆 | − 1)!
𝑛!

[𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆)] . (3)

Here, 𝜎 ranges over the 𝑛! possible ways to order the transactions in 𝑇 and 𝑃𝜎tx denotes the set

of transactions that precede tx in the order 𝜎 . The equality between Eqs. (2) and (3) follows by

counting the number of orders 𝜎 such that 𝑃𝜎tx = 𝑆 , which there are |𝑆 |! · (𝑛 − |𝑆 | − 1)! of.

Another way to understand the Shapley GCM is through the following probabilistic experiment:

(1) Select an ordering 𝜎 of the transactions in 𝑇 uniformly at random.

(2) Start with an empty set of transactions and add transactions one by one in the order given

by 𝜎 .

(3) Whenever a transaction tx is added, let 𝑆 = 𝑃𝜎tx be the set of transactions just before adding

it and compute tx’smarginal contribution to the execution time as 𝑣 (𝑆 ∪ {𝑡𝑥}) − 𝑣 (𝑆); i.e., by
how much did the execution time increase by adding tx to the current set of transactions.

(4) The gas consumption of tx ∈ 𝑇 is the expectation of its marginal contribution across the

experiment.

The reader familiar with cooperative game theory will have already recognized the immediate

connection with Shapley values: if we see each transaction tx ∈ 𝑇 as a player in a game with

valuation function 𝑣 : 2
𝑇 → R, then gas𝑆

𝑇
(tx) is precisely the celebrated Shapley value of player tx,

more traditionally written 𝜙tx (𝑣). One classical property of Shapley values is that, given 𝑣 (∅) = 0, as

is the case for us by (S4), their sum equals the valuation of the grand coalition𝑇 :
∑

tx∈𝑇 𝜙tx (𝑣) = 𝑣 (𝑇 ).
The proof is straightforward: for any fixed ordering 𝜎 of 𝑇 , the sum of the marginal contributions

of the transactions is a telescoping sum, i.e., except first and last terms, all others appear once

positively and once negatively, canceling as a result and leaving us with 𝑣 (𝑇 ) − 𝑣 (∅) = 𝑣 (𝑇 ). Since
the sum does not depend on 𝜎 , the same holds when taking the expectation with respect to 𝜎 . This

already gives us our first property of the Shapley GCM, namely Efficiency:

Lemma 4.3. The Shapley GCM satisfies Efficiency (Property 7).

We postpone studying the Shapley GCM further until introducing our other mechanisms in the

section.

A second GCM based on the idea that a transaction’s gas consumption should be its marginal

contribution to the execution time is the Banzhaf mechanism:

Definition 4.4 (Banzhaf GCM). Given a set of transactions 𝑇 consisting of |𝑇 | = 𝑛 transactions

and a transaction tx ∈ 𝑇 , the Banzhaf GCM computes the amount of gas used by tx as follows:

gas𝐵𝑇 (tx) :=
1

2
𝑛−1

∑︁
𝑆⊆𝑇 \{tx}

[𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆)] .



12 Bahar Acilan, Andrei Constantinescu, Lioba Heimbach, and Roger Wattenhofer

As for the Shapley mechanism, the Banzhaf mechanism can be understood probabilistically, but

this time with a separate experiment for each transaction tx. Sample a subset 𝑆 of transactions other

than tx uniformly at random and compute tx’s marginal contribution to the execution time when

added to 𝑆 , namely 𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆). The gas consumption of tx is then its expected marginal

contribution to the execution time. The familiar reader will recognize this as the definition of the

Banzhaf power index 𝛽tx (𝑣). For consistency with Shapley values, we will instead call these Banzhaf
values. While more straightforward than the corresponding experiment used in defining Shapley

values, the fact that we now have 𝑛 separate experiments makes the sum of the values no longer

well-behaved, losing Efficiency for the Banzhaf mechanism:

Lemma 4.5. The Banzhaf GCM does not satisfy Efficiency (Property 7).

We conclude this section by introducing two additional reasonable mechanisms without Easy
Gas Estimation. These mechanisms are notably more straightforward than the Shapley and Banzhaf

GCMs, as they avoid computing marginal contributions. However, they have other drawbacks that

will become more apparent when we begin studying their normative properties alongside the other

mechanisms.

Definition 4.6 (Time-Proportional Makespan GCM). Given a set of transactions𝑇 and a transaction

tx ∈ 𝑇 , the Time-Proportional Makespan (TPM) GCM computes the amount of gas used by tx as
follows:

gasTPM𝑇 (tx) := 𝑡 (tx)∑
tx′∈𝑇 𝑡 (tx′)

· 𝑣 (𝑇 ).

Definition 4.7 (Equally-Split Makespan GCM). Given a set of transactions 𝑇 and a transaction

tx ∈ 𝑇 , the Equally-Split Makespan (ESM) GCM computes the amount of gas used by tx as follows:

gasESM𝑇 (tx) := 𝑣 (𝑇 )
|𝑇 | .

We also consider the following rather pathological mechanism because of the combination of

properties it turns out to satisfy (that none of our other mechanisms do):

Definition 4.8 (Exponentially-Split MakespanGCM). Given a set of transactions𝑇 and a transaction

tx ∈ 𝑇 , the Exponentially-Split Makespan (XSM) GCM computes the amount of gas used by tx as
follows:

gasXSM𝑇 (tx) := 𝑣 (𝑇 )
3
|𝑇 | .

5 Analysis of Our GCMs
In this section, we provide a detailed analysis of the normative properties of our GCMs. Our results

are summarized in Table 1.

5.1 Mechanisms with Easy Gas Estimation
In this section, we analyze the current and Weighted Area GCMs. By definition, both satisfy Easy

Gas Estimation (Property 8) and are Poly-time Computable (Property 9). Since they satisfy Easy Gas

Estimation but are not constant GCMs, Theorem 3.4 implies that neither satisfies Scheduling Sensi-

tivity (Property 6) nor Efficiency (Property 7). Furthermore, both mechanisms satisfy strict Time

Sensitivity (Property 2): increasing the time 𝑡 of a transaction strictly increases its gas consumption.

Similarly, both satisfy strict Set Inclusion (Property 4): since transactions’ gas consumptions are
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Property Current W. Area Shapley Banzhaf TPM ESM XSM

Resource Sensitivity (Property 1) = < ≤ ≤ ≤ ≤ ≤
Time Sensitivity (Property 2) < < < < < ≤ ≤
Resource-Time Sensitivity (Property 3) ≤ < ≤ ≤ ≤ ≤ ≤
Set Inclusion (Property 4) < < ≤ ≤
Transaction Bundling (Property 5) = ≤ ≤ ≤ <

Scheduling Sensitivity (Property 6) < <

Efficiency (Property 7)

Easy Gas Estimation (Property 8)

Poly-time Computable (Property 9) 𝑆 (𝑣) 𝐵(𝑣) 𝑣 𝑣 𝑣

Table 1. Comparison of GCMs based on their adherence to the defined properties. < indicates that the
mechanism strictly satisfies the property, = indicates trivial satisfaction (by equality), and ≤ indicates
satisfaction (not necessarily strict). A “✓” means the property is satisfied; “×” means it is not satisfied. For
computational complexity, “𝑣” means the mechanism is as hard to compute as 𝑣 (·) itself, “𝑆 (𝑣)” means it is
as hard as computing Shapley values for 𝑣 , and “𝐵(𝑣)” means it is as hard as computing Banzhaf values for 𝑣 .

strictly positive, a strict superset of a given set of transactions consumes strictly more gas. For the

remaining three properties, the two mechanisms behave slightly differently:

Resource Sensitivity (Property 1). The current mechanism ignores the set of resources 𝑅 that a

transaction accesses, so replacing 𝑅 with a strict superset of it does not change the transaction’s gas

consumption. Therefore, the current mechanism satisfies Resource Sensitivity with equality. On the

other hand, the Weighted Area mechanism adds an extra term of 𝑡 ·𝑤𝑟 > 0 to the gas consumption

for each additional resource 𝑟 added to 𝑅, so it satisfies strict Resource Sensitivity.

Resource-Time Sensitivity (Property 3). From the above results on whether our two mechanisms

satisfy Resource Sensitivity and Time Sensitivity, Lemmas 3.1 and 3.2 allow us to conclude that

the current mechanism satisfies Resource-Time Sensitivity, while the Weighted Area mechanism

satisfies it strictly.

Transaction Bundling (Property 5). Concatenating two transactions with times 𝑡1 and 𝑡2 results in

a transaction with time 𝑡1 + 𝑡2. Since the current mechanism equates gas consumption with time,

the bundled transaction has the same gas consumption as the two individual transactions combined.

This implies that the current mechanism satisfies Transaction Bundling with equality. Finally, the
Weighted Area mechanism satisfies Transaction Bundling, as shown below. If we restrict ourselves

to bundling transactions with different resource sets, the property is strictly satisfied.

Lemma 5.1. The Weighted Area GCM satisfies Transaction Bundling (Property 5). If we only consider
bundling transactions with different resource sets, the property is strictly satisfied.

Proof. Consider two transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2). Let tx3 ≃ (𝑡1 + 𝑡2, 𝑅1 ∪ 𝑅2) be
a transaction consisting of the concatenation of tx1 and tx2. We want to show that gasWA (tx1) +
gasWA (tx2) ≤ gasWA (tx3). By definition, this amounts to:

𝑡1 ·
(
1 +

∑︁
𝑟 ∈𝑅1

𝑤𝑟

)
+ 𝑡2 ·

(
1 +

∑︁
𝑟 ∈𝑅2

𝑤𝑟

)
≤ (𝑡1 + 𝑡2) ·

(
1 +

∑︁
𝑟 ∈𝑅1∪𝑅2

𝑤𝑟

)
(4)

Which is true because

∑
𝑟 ∈𝑅𝑖 𝑤𝑟 ≤ ∑

𝑟 ∈𝑅1∪𝑅2

𝑤𝑟 for 𝑖 ∈ {1, 2}. Because the weights are strictly
positive, equality occurs if and only if 𝑅1 = 𝑅1 ∪ 𝑅2 and 𝑅2 = 𝑅1 ∪ 𝑅2; i.e., 𝑅1 = 𝑅2. Hence, the

property is satisfied strictly if we restrict bundling transactions to cases where 𝑅1 ≠ 𝑅2. □
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5.2 Mechanisms without Easy Gas Estimation
In this section, we analyze the Shapley, Banzhaf, TPM, ESM, and XSM GCMs. By definition, all

of them require knowledge of 𝑇 to compute gas𝑇 (tx), so they do not satisfy Easy Gas Estimation

(Property 8). Next, we examine each of the remaining properties individually and analyze whether

they hold for our five mechanisms.

Poly-time Computable (Property 9). The TPM, ESM, and XSM GCMs are all Poly-time Computable

whenever determining the makespan of a given set of transactions under the chosen scheduler

is feasible in polynomial time, i.e., when 𝑣 (𝑇 ) can be computed in polynomial time.
15

In fact,

the problems are all equally difficult to computing such makespans. In contrast, computing gas

consumptions under the Shapley and Banzhaf GCMs hits another hurdle: it is no longer enough

to be able to efficiently compute 𝑣 (𝑇 ), but instead, one needs to be able to compute the Shapley

or Banzhaf values of the transactions, involving aggregating over (𝑣 (𝑇 ′))𝑇 ′⊆𝑇 . Hence, computing

Shapley and Banzhaf values is, in general, NP-hard and #P-complete [17, 22, 38, 39, 48]. Moreover,

no deterministic polynomial-time algorithm can approximate the Shapley values within a constant

factor unless P = NP. Using randomization could, in principle, circumvent this: to approximate an

average consisting of exponentially many terms, sample polynomially many uniformly at random,

and take their average. However, randomization would not be appropriate for the blockchain

context, and this still runs into the problem of computing the sampled terms, which is as hard as

evaluating 𝑣 a constant number of times. See [13] for an ampler discussion of computing Shapley

and Banzhaf values. Note that the previous results mostly pertain to functions 𝑣 of a different shape

than ours (i.e., not related to scheduling). We have not attempted to show that hardness is retained

in our context, but expect this to be true. Note still that because the Shapley GCM is Efficient, it

can be used to compute 𝑣 (𝑇 ) by adding up the gas consumptions of all transactions in 𝑇 , meaning

that the Shapley GCM is at least as difficult to compute as 𝑣 (𝑇 ). However, this simple reduction no

longer works for the Banzhaf GCM.

Efficiency (Property 7). We have already seen that the Shapley GCM is Efficient (Lemma 4.3)

while the Banzhaf GCM is not (Lemma 4.5). Moreover, by adding up the gas consumption, one can

immediately see from the definitions that TPM and ESM are Efficient, while XSM is not.

Scheduling Sensitivity (Property 6). The ESM and XSM GCMs can be easily seen to strictly satisfy

Scheduling Sensitivity. This is because, under both mechanisms, given a set of transactions 𝑇 , the

gas consumption of any transaction in 𝑇 is computed as 𝑓 ( |𝑇 |) · 𝑣 (𝑇 ), where 𝑓 is either
1

𝑥
or

1

3
𝑥 .

Notably, the first factor depends only on |𝑇 |, so if a transaction in 𝑇 were modified in a way that

increases the makespan, this increase would also be reflected proportionally in its gas consumption.

In contrast, the Shapley, Banzhaf, and TPM GCMs do not satisfy Scheduling Sensitivity (proven

in Lemma 5.2 below). This may be particularly surprising for the Shapley and Banzhaf GCMs, as

they were specifically designed to account for marginal increases in makespan. The catch is that

Scheduling Sensitivity considers replacing a transaction tx with another one leading to an increase

in makespan. However, some elements in (𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆))𝑆⊆𝑇 \{tx} may still decrease as a result

(except for 𝑆 = 𝑇 \ {tx}, for which we assumed an increase). Because both the Shapley and Banzhaf

values of tx take a weighted average over these values, the average might still decrease, which is

what happens in the example in the lemma below.

15
This is essentially never true for non-trivial makespan minimization problems. In particular, if we restrict our attention to

the case of unit-length transactions (i.e., with 𝑡 = 1) and infinitely many threads 𝑛 = ∞, then checking for the existence of a

schedule with makespan 𝑐 corresponds to checking whether the intersection graph of the transactions (i.e., where edges

correspond to transactions with intersecting resource sets) is 𝑐-colorable. For 𝑐 = 3, this is well-known to be NP-complete,

but this result is for general graphs. However, there is a straightforward way to model any graph 𝐺 = (𝑉 , 𝐸 ) as an
intersection graph of transactions: vertices 𝑣 ∈ 𝑉 are transactions and for every edge (𝑢, 𝑣) ∈ 𝐸, create a new resource 𝑟

and add it to the resource sets of transactions 𝑢 and 𝑣.
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Lemma 5.2. The Shapley, Banzhaf and TPM GCMs do not satisfy Scheduling Sensitivity (Property 6).

Proof. Consider the set of transactions𝑇 = {tx1, tx2} and two additional transactions tx3 and tx4
such that tx1 ≃ (1, {𝑟1}), tx2 ≃ (3, {𝑟2}), tx3 ≃ (2, {𝑟1}), and tx4 ≃ (1, {𝑟2}). Then, for any number

of threads 𝑛 ≥ 2 and the optimal scheduler we have 𝑣 (𝑇 ∪ {tx3}) = 3 < 4 = 𝑣 (𝑇 ∪ {tx4}). However:

gas𝑆
𝑇∪{tx3 } (tx3) =

2 + 2 + 2 + 0 + 0 + 0

6

= 1 >
5

6

=
1 + 1 + 1 + 1 + 1 + 0

6

= gas𝑆
𝑇∪{tx4 } (tx4)

gas𝐵
𝑇∪{tx3 } (tx3) =

2 + 2 + 0 + 0

4

= 1 >
3

4

=
1 + 0 + 1 + 1

4

= gas𝐵
𝑇∪{tx4 } (tx4)

gasTPM
𝑇∪{tx3 } (tx3) =

2

1 + 3 + 2

· 3 = 1 >
4

5

=
1

1 + 3 + 1

· 4 = gasTPM
𝑇∪{tx4 } (tx4).

So, the Shapley, Banzhaf, and TPM GCMs all violate Scheduling Sensitivity in this case. □

Transaction Bundling (Property 5). We find that the Banzhaf, TPM and XSM GCMs satisfy

Transaction Bundling, only XSM satisfying it strictly, while the Shapley and ESM GCMs do not

satisfy the property. We prove these facts in the following 5 lemmas.

Lemma 5.3. The Shapley GCM does not satisfy Transaction Bundling (Property 5).

Lemma 5.4. The Banzhaf GCM satisfies Transaction Bundling (Property 5).

Lemma 5.5. The TPM GCM satisfies Transaction Bundling (Property 5).

Lemma 5.6. The ESM GCM does not satisfy Transaction Bundling (Property 5).

Lemma 5.7. The XSM GCM strictly satisfies Transaction Bundling (Property 5).

Set Inclusion (Property 4). We find that the TPM and ESM GCMs satisfy Set Inclusion, while the

Shapley, Banzhaf and XSM GCMs do not satisfy the property. We prove these facts in the following

5 lemmas.

Lemma 5.8. The Shapley GCM does not satisfy Set Inclusion (Property 4).

Lemma 5.9. The Banzhaf GCM does not satisfy Set Inclusion (Property 4).

Lemma 5.10. The TPM GCM satisfies Set Inclusion (Property 4).

Lemma 5.11. The ESM GCM satisfies Set Inclusion (Property 4).

Lemma 5.12. The XSM GCM does not satisfy Set Inclusion (Property 4).

Resource-Time Sensitivity (Property 3). All five mechanisms satisfy this property. For the ESM and

XSMGCMs, this is an immediate consequence of property (S3). For the Shapley and Banzhaf GCMs,

one can see this by recalling that they compute the gas consumption of a transaction tx ∈ 𝑇 as a

weighted average over (𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆))𝑆⊆𝑇 \{tx} . Hence, by property (S3), when tx is replaced
with some tx′ ≳ tx, no term in the previous decreases, so their weighted average also does not

decrease. Finally, for the TPM GCM, we show this in the lemma after the next paragraph.

Resource Sensitivity (Property 1) and Time Sensitivity (Property 2). Because all five mechanisms

satisfy Resource-Time Sensitivity, by Lemma 3.1, they also all satisfy Resource Sensitivity and

Time Sensitivity. Out of the five mechanisms, the Shapley, Banzhaf, and TPM GCMs satisfy the

property strictly. For the first two, this is because when 𝑡 (tx) increases, at least one term in

(𝑣 (𝑆 ∪ {tx}) − 𝑣 (𝑆))𝑆⊆𝑇 \{tx} strictly increases, namely the term for 𝑆 = ∅, while no terms decrease

by property (S3). Last, for the TPM GCM, we show this in the lemma below.
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Lemma 5.13. The TPM GCM satisfies Resource-Time Sensitivity (Property 3) and strict Time Sensi-
tivity (Property 2).

6 Towards a Fee Market for Parallel Execution
Armed with an understanding of the achievable trade-offs between desirable properties in a GCM —

specifically, the impossibility of satisfying all properties in a single mechanism — and our analysis

of various candidate mechanisms and their properties, we propose the weighted area GCM for

implementation in a fee market for parallel execution. Given that the weighted area GCM satisfies

Easy Gas Estimation, it achieves the most additional properties one could hope for in a non-constant

GCM (see Theorem 3.4).

Satisfying Easy Gas Estimation ensures that each transaction consumes a fixed amount of gas,

regardless of other transactions in the same block. From the perspective of currently deployed

TFMs (e.g., EIP-1559), which process transactions with fixed sizes, nothing changes. Thus, the

existing properties of these mechanisms remain intact. At a high level, the key properties we strive

for in a TFM are incentive compatibility for both block producers and users, welfare optimality,

and collusion resistance. However, no TFM can achieve all these properties simultaneously [15,

16, 25]. Importantly, when composing the weighted area GCM with a TFM of choice, the level of

sophistication required from users in their bidding strategy does not increase—unlike in currently

deployed fee markets for parallel execution [37, 41].

We next further outline some additional steps that need to be taken to implement the weighted

area GCM in practice:

Setting Weights. The weighted area GCM uses weights to reflect resource demand, i.e., the higher

the demand for a resource, the higher its associated weight. As a result, transactions that are

harder to parallelize due to execution on high-demand resources will incur higher gas costs. An

open question remains on how to determine the relative weights of these resources. One potential

approach is to use an adjustment mechanism similar to those employed in EIP-1559 [10], the blob

fee market [11] (an additional Ethereum fee market for data availability), or other proposals aimed

at addressing limitations in current demand adjustment mechanisms [5].

Integration with Other Gas Components. Importantly, the weighted area GCMwe propose focuses

solely on the execution component, whereas gas, in practice, accounts for multiple factors, such as

data bandwidth and storage. Moving toward real-world deployment could take two approaches:

— One option is integrating the new execution gas measure into Ethereum’s existing framework,

which already assigns gas weights to different transaction components (e.g., storage and data

bandwidth). These weights are then combined into a single value representing transaction size.

To incorporate the weighted area GCM, one would need to determine the relative contribution of

execution compared to other gas components and adjust the scaling factors accordingly. With the

new weighted area GCM, this task becomes even more challenging, as it is difficult to establish

a single value that remains fixed over several years. Specifically, determining the relative cost of

reduced parallelization potential from a transaction, compared to the cost of a byte of bandwidth,

presents a significant challenge.

— A more principled approach would be to integrate the new execution gas measure into a multi-

dimensional fee market, where execution is one component alongside storage, data bandwidth, and

other factors. The Ethereum community is actively discussing the transition to a multi-dimensional

fee market [8], making this a timely opportunity to incorporate the new execution gas measure.

The execution gas component we propose can itself be understood as a multi-dimensional fee

market, where each resource represents a distinct dimension with its own posted price, dynamically

adjusted based on demand, similarly to the previously outlined approach for weights. These resource
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dimensions could then be integrated as top-level dimensions within the full multi-dimensional fee

market. For example, one dimension might represent bandwidth, while another could correspond

to execution on resource 𝑟5. Beyond the general advantages of a multi-dimensional fee market, this

approach is perhaps also the most principled and effective method to integrate the weighted area
GCM into a fee market.

7 Related Work
7.1 Transaction Fee Mechanisms
There is extensive research on blockchain fee markets, with a particular focus on Ethereum and

Bitcoin. Early studies primarily examined Bitcoin, exploring monopolistic pricing mechanisms [34,

59]. More recent contributions to this field include [24, 45, 46]. Unlike these works, our study

concerns measuring resource usage on a blockchain with client-side parallel execution, rather than

focusing on pricing.

The TFM design framework was introduced by Roughgarden [50, 51]. Roughgarden’s analysis

of the EIP-1559 mechanism [10] initiated an active line of research on TFMs. Chung and Shi [16]

demonstrated that no TFM can be ideal —meaning it cannot simultaneously be incentive-compatible

for users and block producers while also being resistant to collusion between the two. This conclu-

sion holds even for weaker definitions of collusion resilience, as shown by Chung et al. [15] and

Gafni and Yaish [25]. Finally, attempts to address these limitations using cryptographic techniques

[55, 58] have made progress in overcoming certain impossibilities, while other attempts relax the

desiderata [26]. However, designing an ideal TFM still remains out of reach. While these studies

examine the limitations of TFMs, our focus is on GCMs for parallel execution and how to integrate

them with a TFM.

A related body of work examines the dynamics of TFMs over multiple blocks, particularly

focusing on the base fee in EIP-1559. Leonardos et al. [35, 36] demonstrate that the stability of the

base fee depends on the adjustment parameter, with short-term volatility but long-term block size

stability. Reijsbergen et al. [49] suggest using an adaptive adjustment parameter to mitigate block

size fluctuations, while Ferreira et al. [23] highlight user experience issues caused by bounded base

fee oscillations. Additionally, Hougaard and Pourpouneh [30] and Azouvi et al. [5] reveal that the

base fee can be manipulated by non-myopic miners.

Given the discussion surrounding multi-dimensional fees in Ethereum [8, 9] and the deployment

of EIP-4844 [11] (a first step towards a multi-dimensional fee market on Ethereum), a recent line

of work explores multi-dimensional fee markets, focusing on efficient pricing mechanisms and

their optimality. This work is further refined by Diamandis et al. [19], who design and analyze

multi-dimensional blockchain fee markets to align incentives and improve network performance.

Building on this, Angeris et al. [2] prove that such fee markets are nearly optimal, with efficiency

improving over time even under adversarial conditions. Multidimensional fee markets are closely

related to fee markets designed for parallel execution. In particular, in the weighted area GCM, the

weights can be interpreted as fees within a multidimensional fee market. Unlike previous literature

on multidimensional fee markets, we focus on parallelization, introduce desirable properties, and

evaluate how various mechanisms perform.

Further extensions of TFMs have emerged. Bahrani et al. [7] consider TFMs in the presence

of maximal extractable value (MEV), i.e., value extractable by the block producer. Further, Wang

et al. [57] design a fee mechanism for proof networks, whereas Bahrani et al. [6] introduce a

transaction fee mechanism for heterogeneous computation. Our work most closely relates to the

latter, but, in contrast, our chosen approach is closer to multidimensional fee markets, trading

complexity for the block producer for stronger incentive compatibility for the user.
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Local fee markets have recently been a topic of discussion in the blockchain space [18, 21, 31, 37].

The core idea is that transactions interacting with highly contested states incur higher fees, while

those involving non-contested states pay lower fees. However, discussions on local fee markets have

largely remained high-level, without a precise characterization of the desired properties beyond

this general goal. Moreover, currently implemented local fee markets [37] require significant user

sophistication to set fees appropriately. In this work, we formalize the desiderata for fee markets in

the context of parallel execution and identify the weighted area GCM as a promising candidate.

One key advantage is its compatibility with a TFM, enabling simple fee estimation for users.

7.2 Parallel Execution
Blockchain concurrency has been a focal point in an active line of research. In particular, numerous

efforts have aimed to enable parallel transaction processing through speculative execution [1, 3, 14,

20, 27, 52, 54, 60]. Note that speculative execution is already deployed by multiple blockchains [4, 40,

53]. Static analysis has also been employed to identify parallelizable transactions, though it cannot

completely eliminate inherent dependencies [42, 47]. Similarly, Neiheiser et al. [44] demonstrate

how parallel execution can assist struggling nodes in catching up. While these works are orthogonal

to ours, they highlight the overhead of parallel execution when there is no advance knowledge

about a transaction’s state accesses.

Further, Saraph and Herlihy [52] and Heimbach et al. [28] have evaluated the parallelization

potential of the Ethereum workload. The latter demonstrates that a speedup of approximately

fivefold is achievable, assuming state accesses are known in advance. Additionally, Solana [56] and

Sui [43] already perform parallel execution with advance knowledge of state accesses. However, in

practice, state accesses are not known beforehand on many blockchains such as Ethereum. There,

less than 2% of transactions disclose them proactively, as shown by Heimbach et al. [29], due to a

lack of incentives. In this work, we aim to take a step toward unlocking the parallelization potential

by designing a TFM that supports parallel execution. This mechanism relies on the disclosure of

state accesses as done in Solana [56] and Sui [43].

8 Conclusion
In this work, we took a step towards creating a fee market that meets the demands of parallel

execution environments while also upholding the properties we want from a TFM.

Recently, the idea of local fee markets has been proposed for blockchains that support parallel

execution. However, to the best of our knowledge, before this work, the demands on these fee

markets have only been outlined at a very high level, and the markets that have been implemented

are not ideal yet, e.g., they require high levels of sophistication from users when bidding.

In this work, we addressed this gap by introducing a framework with two key components: a

GCM, which measures the execution-related load a transaction imposes on the network in units of

gas, and a TFM, which determines the cost associated with each unit of gas. We then formalized the

desired properties for the GCM in such a fee market. After outlining the desiderata, we evaluated

various mechanisms against them and identified a strong candidate through this analysis — the

weighted area GCM.

Setting the right incentives in fee markets for parallel execution is crucial to unlocking the

full potential of execution layer parallelization, and we hope that our work contributes to the

development of fee markets capable of meeting the demands of such environments.
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A Proofs Omitted From Section 3
Lemma 3.1. Property 3 holds if and only if Properties 1 and 2 hold.

Proof. Properties 1 and 2 are special cases of Property 3, corresponding to the scenarios where

𝑡1 = 𝑡2 and 𝑅1 = 𝑅2, respectively. Therefore, the (⇒) direction holds. To prove the (⇐) direction,
assume Properties 1 and 2 hold and consider a set of transactions 𝑇 and two transactions tx1 ≃
(𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2), both not in𝑇 , such that 𝑡1 ≤ 𝑡2 and 𝑅1 ⊆ 𝑅2. Let tx3 be another transaction
not in 𝑇 such that tx3 ≃ (𝑡1, 𝑅2). By first applying Property 1 and then Property 2, we obtain:

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx3 } (tx3) ≤ gas𝑇∪{tx2 } (tx2).
This establishes the conclusion. □

Lemma 3.2. Property 3 holds strictly if and only if Properties 1 and 2 hold strictly.

Proof. The strict variants of Properties 1 and 2 are special cases of the strict variant of Property 3,

corresponding to the scenarios where 𝑡1 = 𝑡2 and 𝑅1 = 𝑅2, respectively. Therefore, the (⇒) direction
holds. To prove the (⇐) direction, assume Properties 1 and 2 hold strictly and consider a set of

transactions𝑇 and two transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2), both not in𝑇 , such that 𝑡1 ≤ 𝑡2
and 𝑅1 ⊆ 𝑅2, and additionally tx1 ; tx2 (i.e., at least one of the previous holds strictly). Let tx3
be another transaction not in 𝑇 such that tx3 ≃ (𝑡1, 𝑅2). By first applying Property 1 and then

Property 2 (their non-strict versions), we obtain:

gas𝑇∪{tx1 } (tx1) ≤ gas𝑇∪{tx3 } (tx3) ≤ gas𝑇∪{tx2 } (tx2). (5)

From this, we get that gas𝑇∪tx1 (tx1) ≤ gas𝑇∪tx2 (tx2), so it remains to rule out the equality case.

Assume for a contradiction that gas𝑇∪{tx1 } (tx1) = gas𝑇∪{tx2 } (tx2), from which the two inequalities

hold with equality in Eq. (5). Because Properties 1 and 2 hold strictly, this can only be the case if

tx1 ≃ tx3 ≃ tx2, contradicting the assumption that tx1 ; tx2. □

B Proofs Omitted From Section 4
Lemma 4.5. The Banzhaf GCM does not satisfy Efficiency (Property 7).

Proof. Consider the set of transactions 𝑇 = {tx1, tx2, tx3} where tx1 ≃ (1, {𝑟1}), tx2 ≃ (1, {𝑟1}),
and tx3 ≃ (1, {𝑟2}). Then, for any number of threads 𝑛 ≥ 2 and the optimal scheduler, we have:

𝑣 ({tx1}) = 𝑣 ({tx2}) = 𝑣 ({tx3}) = 𝑣 ({tx1, tx3}) = 𝑣 ({tx2, tx3}) = 1, 𝑣 ({tx1, tx2}) = 𝑣 (𝑇 ) = 2.

A short calculation then shows that:

gas𝐵𝑇 (tx1) = gas𝐵𝑇 (tx2) =
1 + 1 + 0 + 1

4

=
3

4

, gas𝐵𝑇 (tx3) =
1 + 0 + 0 + 0

4

=
1

4

.

Thus,

∑
tx∈𝑇 gas𝐵

𝑇
(tx) = 3

4
+ 3

4
+ 1

4
= 7

4
≠ 2 = 𝑣 (𝑇 ), violating Efficiency. □

C Proofs Omitted From Section 5
C.1 Transaction Bundling (Property 5)

Lemma 5.3. The Shapley GCM does not satisfy Transaction Bundling (Property 5).

Proof. Consider the set of transactions 𝑇 = {tx4} and three other transactions tx1, tx2, tx3 such
that tx3 is the concatenation of tx1 and tx2, where tx1 ≃ (1, {𝑟2}), tx2 ≃ (1, {𝑟2}), tx3 ≃ (2, {𝑟2}),
and tx4 ≃ (1, {𝑟1}). Then, for any number of threads 𝑛 ≥ 2 and the optimal scheduler, we have:

gas𝑆
𝑇∪{tx1,tx2 } (tx1) = gas𝑆

𝑇∪{tx1,tx2 } (tx2) =
0 + 1 + 1 + 1 + 1 + 1

6

gas𝑆
𝑇∪{tx3 } (tx3) =

2 + 1

2

.
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Thus, gas𝑆
𝑇∪{tx1,tx2 } (tx1) + gas𝑆

𝑇∪{tx1,tx2 } (tx2) =
10

6
> 3

2
= gas𝑆

𝑇∪{tx3 } (tx3), which violates Transac-

tion Bundling. □

Lemma 5.4. The Banzhaf GCM satisfies Transaction Bundling (Property 5).

Proof. Consider a set of transactions 𝑇 and three transactions tx1, tx2, tx3 ∉ 𝑇 such that tx3 is
the concatenation of tx1 and tx2. Then, for any scheduler satisfying property (S2), we have:

gas𝐵
𝑇∪{tx1,tx2 } (tx1) + gas𝐵

𝑇∪{tx1,tx2 } (tx2)

=
1

2
|𝑇∪{tx1,tx2 } |−1

∑︁
𝑆⊆(𝑇∪{tx1,tx2 })\{tx1 }

[𝑣 (𝑆 ∪ {tx1}) − 𝑣 (𝑆)]

+ 1

2
|𝑇∪{tx1,tx2 } |−1

∑︁
𝑆⊆(𝑇∪{tx1,tx2 })\{tx2 }

[𝑣 (𝑆 ∪ {tx2}) − 𝑣 (𝑆)]

=
1

2
|𝑇∪{tx1,tx2 } |−1

∑︁
𝑆⊆𝑇

[𝑣 (𝑆 ∪ {tx1}) − 𝑣 (𝑆) + 𝑣 (𝑆 ∪ {tx1, tx2}) − 𝑣 (𝑆 ∪ {tx2})]

+ 1

2
|𝑇∪{tx1,tx2 } |−1

∑︁
𝑆⊆𝑇

[𝑣 (𝑆 ∪ {tx2}) − 𝑣 (𝑆) + 𝑣 (𝑆 ∪ {tx1, tx2}) − 𝑣 (𝑆 ∪ {tx1})]

=
2

2
|𝑇∪{tx1,tx2 } |−1

∑︁
𝑆⊆𝑇

[𝑣 (𝑆 ∪ {tx1, tx2}) − 𝑣 (𝑆)]

≤ 1

2
|𝑇∪{tx3 } |−1

∑︁
𝑆⊆𝑇

[𝑣 (𝑆 ∪ {tx3}) − 𝑣 (𝑆)] = gas𝐵
𝑇∪{tx3 } (tx3). □

Lemma 5.5. The TPM GCM satisfies Transaction Bundling (Property 5).

Proof. Consider a set of transactions 𝑇 and three transactions tx1, tx2, tx3 ∉ 𝑇 such that tx3 is
the concatenation of tx1 and tx2. Then, for any scheduler satisfying property (S2), we have:

gasTPM
𝑇∪{tx1,tx2 } (tx1) + gasTPM

𝑇∪{tx1,tx2 } (tx2)

=
𝑡 (tx1)∑

tx′∈𝑇∪{tx1,tx2 } 𝑡 (tx′)
· 𝑣 (𝑇 ∪ {tx1, tx2}) +

𝑡 (tx2)∑
tx′∈𝑇∪{tx1,tx2 } 𝑡 (tx′)

· 𝑣 (𝑇 ∪ {tx1, tx2})

=
𝑡 (tx1) + 𝑡 (tx2)∑

tx′∈𝑇∪{tx1,tx2 } 𝑡 (tx′)
· 𝑣 (𝑇 ∪ {tx1, tx2})

=
𝑡 (tx3)∑

tx′∈𝑇∪{tx3 } 𝑡 (tx′)
· 𝑣 (𝑇 ∪ {tx1, tx2})

≤ 𝑡 (tx3)∑
tx′∈𝑇∪{tx3 } 𝑡 (tx′)

· 𝑣 (𝑇 ∪ {tx3}) = gasTPM
𝑇∪{tx3 } (tx3). □

Lemma 5.6. The ESM GCM does not satisfy Transaction Bundling (Property 5).

Proof. Consider the set of transactions 𝑇 = {tx4} and three transactions tx1, tx2, tx3 ∉ 𝑇 such

that tx3 is the concatenation of tx1 and tx2, where tx1 ≃ (1, {𝑟1}), tx2 ≃ (1, {𝑟1}), tx3 ≃ (2, {𝑟1}),
and tx4 ≃ (1, {𝑟1}). Then, for any number of threads 𝑛 ≥ 2 and the optimal scheduler, we have:

gasESM
𝑇∪{tx1,tx2 } (tx1) = gasESM

𝑇∪{tx1,tx2 } (tx2) =
3

3

, gasESM
𝑇∪{tx3 } (tx3) =

3

2

.

Thus, gasESM
𝑇∪{tx1,tx2 } (tx1) + gasESM

𝑇∪{tx1,tx2 } (tx2) = 2 > 3

2
= gasESM

𝑇∪{tx3 } (tx3), which violates Transac-

tion Bundling. □
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Lemma 5.7. The XSM GCM strictly satisfies Transaction Bundling (Property 5).

Proof. Consider a set of transactions 𝑇 and three transactions tx1, tx2, tx3 ∉ 𝑇 such that tx3 is
the concatenation of tx1 and tx2. Then, for any scheduler satisfying property (S2), we have:

gasXSM
𝑇∪{tx1,tx2 } (tx1) + gasXSM

𝑇∪{tx1,tx2 } (tx2)

=
𝑣 (𝑇 ∪ {tx1, tx2})
3
|𝑇∪{tx1,tx2 } |

+ 𝑣 (𝑇 ∪ {tx1, tx2})
3
|𝑇∪{tx1,tx2 } |

=
2

3

· 𝑣 (𝑇 ∪ {tx1, tx2})
3
|𝑇∪{tx3 } |

<
𝑣 (𝑇 ∪ {tx1, tx2})

3
|𝑇∪{tx3 } |

≤ 𝑣 (𝑇 ∪ {tx3})
3
|𝑇∪{tx3 } |

= gasXSM
𝑇∪{tx3 } (tx3). □

C.2 Set Inclusion (Property 4)
Lemma 5.8. The Shapley GCM does not satisfy Set Inclusion (Property 4).

Proof. Consider the transaction sets 𝑇 = {tx1}, 𝑇1 = {tx2, tx3}, and 𝑇2 = {tx2, tx3, tx4} where
tx1 ≃ (1, {𝑟1}), tx2 ≃ (1, {𝑟2}), tx3 ≃ (1, {𝑟2}), and tx4 ≃ (1, {𝑟1}). Then, for any number of threads

𝑛 ≥ 2 and the optimal scheduler, we have:

gas𝑆𝑇∪𝑇1 (𝑇1) =
5

6

+ 5

6

, gas𝑆𝑇∪𝑇2 (𝑇2) =
12

24

+ 12

24

+ 12

24

.

Thus, gas𝑆
𝑇∪𝑇1 (𝑇1) =

10

6
> 36

24
= gas𝑆

𝑇∪𝑇2 (𝑇2), which violates Set Inclusion. □

Lemma 5.9. The Banzhaf GCM does not satisfy Set Inclusion (Property 4).

Proof. Consider the transaction sets 𝑇 = ∅, 𝑇1 = {tx1, tx2}, and 𝑇2 = {tx1, tx2, tx3} where

tx1 ≃ (1, {𝑟1}), tx2 ≃ (1, {𝑟1}), and tx3 ≃ (1, {𝑟2}). Then, for any number of threads 𝑛 ≥ 2 and the

optimal scheduler, we have:

gas𝐵𝑇∪𝑇1 (𝑇1) =
1 + 1

2

+ 1 + 1

2

, gas𝐵𝑇∪𝑇2 (𝑇2) =
1 + 1 + 0 + 1

4

+ 1 + 1 + 0 + 1

4

+ 1 + 0 + 0 + 0

4

.

Thus, gas𝐵
𝑇∪𝑇1 (𝑇1) = 2 > 7

4
= gas𝐵

𝑇∪𝑇2 (𝑇2), which violates Set Inclusion. □

Lemma 5.10. The TPM GCM satisfies Set Inclusion (Property 4).

Proof. Consider a set of transactions 𝑇 and two sets of transactions 𝑇1 ⊆ 𝑇2, disjoint from 𝑇 .

Then, for any scheduler satisfying property (S1), we have:

gasTPM𝑇∪𝑇1 (𝑇1) =
∑

tx∈𝑇1 𝑡 (tx)∑
tx′∈𝑇∪𝑇1 𝑡 (tx′)

· 𝑣 (𝑇 ∪𝑇1)

≤
∑

tx∈𝑇1 𝑡 (tx) +
∑

tx∈𝑇2\𝑇1 𝑡 (tx)∑
tx′∈𝑇∪𝑇1 𝑡 (tx′) +

∑
tx′∈𝑇2\𝑇1 𝑡 (tx′)

· 𝑣 (𝑇 ∪𝑇1)

=

∑
tx∈𝑇2 𝑡 (tx)∑

tx′∈𝑇∪𝑇2 𝑡 (tx′)
· 𝑣 (𝑇 ∪𝑇1)

≤
∑

tx∈𝑇2 𝑡 (tx)∑
tx′∈𝑇∪𝑇2 𝑡 (tx′)

· 𝑣 (𝑇 ∪𝑇2) = gasTPM𝑇∪𝑇2 (𝑇2). □

Lemma 5.11. The ESM GCM satisfies Set Inclusion (Property 4).
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Proof. Consider a set of transactions 𝑇 and two sets of transactions 𝑇1 ⊆ 𝑇2, disjoint from 𝑇 .

Then, for any scheduler satisfying property (S1), we have:

gasESM𝑇∪𝑇1 (𝑇1) =
∑︁
tx∈𝑇1

𝑣 (𝑇 ∪𝑇1)
|𝑇 ∪𝑇1 |

=
|𝑇1 |

|𝑇 ∪𝑇1 |
· 𝑣 (𝑇 ∪𝑇1)

≤ |𝑇1 | + |𝑇2\𝑇1 |
|𝑇 ∪𝑇1 | + |𝑇2\𝑇1 |

· 𝑣 (𝑇 ∪𝑇1)

=
|𝑇2 |

|𝑇 ∪𝑇2 |
· 𝑣 (𝑇 ∪𝑇1)

≤ |𝑇2 |
|𝑇 ∪𝑇2 |

· 𝑣 (𝑇 ∪𝑇2) = gasESM𝑇∪𝑇2 (𝑇2). □

Lemma 5.12. The XSM GCM does not satisfy Set Inclusion (Property 4).

Proof. Consider the transaction sets𝑇 = ∅,𝑇1 = {tx1}, and𝑇2 = {tx1, tx2}, where tx1 ≃ (1, {𝑟1})
and tx2 ≃ (1, {𝑟2}). Then, for any number of threads 𝑛 ≥ 2 and the optimal scheduler, we have:

gasXSM𝑇∪𝑇1 (𝑇1) =
1

3
1
, gasXSM𝑇∪𝑇2 (𝑇2) =

1

3
2
+ 1

3
2
.

Thus, gasXSM
𝑇∪𝑇1 (𝑇1) =

1

3
> 2

9
= gasXSM

𝑇∪𝑇2 (𝑇2), which violates Set Inclusion. □

C.3 Resource-Time Sensitivity (Property 3) and Strict Time Sensitivity (Property 2)
Lemma 5.13. The TPM GCM satisfies Resource-Time Sensitivity (Property 3) and strict Time Sensi-

tivity (Property 2).

Proof. Consider a set of transactions 𝑇 and two transactions tx1 ≃ (𝑡1, 𝑅1) and tx2 ≃ (𝑡2, 𝑅2),
both not in 𝑇 , such that 𝑡1 ≤ 𝑡2 and 𝑅1 ⊆ 𝑅2. Then, for any scheduler satisfying property (S3):

gasTPM
𝑇∪{tx1 } (tx1) =

𝑡1∑
tx′∈𝑇∪{tx1 } 𝑡 (tx′)

· 𝑣 (𝑇 ∪ {tx1})

=
𝑡1∑

tx′∈𝑇 𝑡 (tx′) + 𝑡1
· 𝑣 (𝑇 ∪ {tx1})

≤ 𝑡2∑
tx′∈𝑇 𝑡 (tx′) + 𝑡2

· 𝑣 (𝑇 ∪ {tx1})

≤ 𝑡2∑
tx′∈𝑇 𝑡 (tx′) + 𝑡2

· 𝑣 (𝑇 ∪ {tx2}) = gasTPM
𝑇∪{tx2 } (tx2).

This establishes Resource-Time Sensitivity.

To also get strict Time Sensitivity, assume 𝑡1 < 𝑡2 and 𝑅1 = 𝑅2 in the above proof. Note that,

when

∑
tx′∈𝑇 𝑡 (tx′) > 0, the function

𝑡∑
tx′ ∈𝑇 𝑡 (tx′ )+𝑡 is strictly increasing in 𝑡 , guaranteeing that the

first inequality above is strict, so gasTPM
𝑇∪{tx1 } (tx1) < gasTPM

𝑇∪{tx2 } (tx2), as required. In the degenerate

case where

∑
tx′∈𝑇 𝑡 (tx′) = 0, the fraction becomes 1 in both cases, but this can only happen when

𝑇 = ∅, in which case the value 𝑣 increases strictly because 𝑣 ({tx1}) = 𝑡1 < 𝑡2 = 𝑣 ({tx2}). Overall,
the first inequality above again holds strictly, ensuring that gasTPM

𝑇∪{tx1 } (tx1) < gasTPM
𝑇∪{tx2 } (tx2) still

holds, as required. Thus, the strict Time Sensitivity property is satisfied. □
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